
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Spring 4-18-2011

MULTI-CHANNEL PEER-TO-PEER
STREAMING SYSTEMS AS RESOURCE
ALLOCATION PROBLEMS
Miao Wang
University of Nebraska-Lincoln, mwangcse@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Wang, Miao, "MULTI-CHANNEL PEER-TO-PEER STREAMING SYSTEMS AS RESOURCE ALLOCATION PROBLEMS"
(2011). Computer Science and Engineering: Theses, Dissertations, and Student Research. 20.
http://digitalcommons.unl.edu/computerscidiss/20

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/20?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

MULTI-CHANNEL PEER-TO-PEER STREAMING SYSTEMS AS RESOURCE

ALLOCATION PROBLEMS

by

Miao Wang

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professors Lisong Xu and Byrav Ramamurthy

Lincoln, Nebraska

May, 2011

www.manaraa.com

MULTI-CHANNEL PEER-TO-PEER STREAMING SYSTEMS AS RESOURCE

ALLOCATION PROBLEMS

Miao Wang, Ph.D

University of Nebraska, 2011

Advisors: Lisong Xu and Byrav Ramamurthy

In the past few years, the Internet has witnessed the success of Peer-to-Peer (P2P)

streaming technology, which has attracted millions of users. More recently, commer-

cial P2P streaming systems have begun to support multiple channels and a user in

such systems is allowed to watch more than one channel at a time. We refer to such

systems as multi-channel P2P streaming systems. In this dissertation, we focus on

designing multi-channel P2P streaming systems with the goal of providing optimal

streaming quality for all channels, termed as system-wide optimal streaming quality.

Specifically, we design the systems from the perspective of how to optimally allocate

resources in the whole system (e.g., bandwidth contributed by peers).

To achieve system-wide optimal streaming quality, we need to solve two funda-

mental problems in multi-channel P2P streaming systems, namely bandwidth alloca-

tion and block scheduling. According to measurement studies, bandwidth availability

across different channels is not uniform, which means that some channels suffer from

bandwidth deficit, while some others have surplus bandwidth. The bandwidth alloca-

tion problem can be defined as optimally allocating bandwidth to different channels

to improve the overall streaming quality. In contrast, the block scheduling problem

can be defined as optimally utilizing the allocated bandwidth for delivering useful

video streams to peers before their corresponding playback deadlines. We study both

problems in this dissertation.

www.manaraa.com

Since there already exist many efficient block scheduling protocols, bandwidth

allocation protocols for cross-channel bandwidth sharing should be flexible to adopt

any of the existing block scheduling protocols. We propose an optimal bandwidth

allocation protocol based on Divide-and-Conquer strategy (DAC) and a utility-based

optimization model, which is flexible enough to incorporate existing block scheduling

protocols and is scalable to support a large number of channels and peers. To pro-

vide guidelines for choosing the proper protocol for a specific application scenario,

we compare existing and potential designs. Our results show the trade-off between

bandwidth utilization efficiency and implementation complexity. When the overall

system has insufficient bandwidth to support all peers, we should use admission con-

trol algorithms to reject some users. We study a class of admission control algorithms,

based on the processor-sharing queueing model, which statistically guarantees that a

P2P streaming system has sufficient bandwidth. The bandwidth allocation problem

and the block scheduling problem are solved separately in existing works, where each

problem has its own optimization objective. Therefore, from the system perspective,

the optimal solution to bandwidth allocation is not necessarily the optimal solution

to block scheduling and vice versa. We jointly study the two problems to improve the

system-wide streaming quality. We establish general nonlinear optimization models

for solving the two problems under various scenarios and apply a two-player game

theoretic model to analyze the interaction between the two problems. Our analysis

results establish the performance loss bounds for special applications and our packet-

level simulations show the performance loss in general cases. In future, this work can

be extended to other time sensitive systems.

www.manaraa.com

ACKNOWLEDGEMENTS

I have been very lucky to study computer networking at the University of

Nebraska-Lincoln, where I have opportunity to work with a number of outstanding

professors. I am deeply indebted to my Ph.D advisors Dr. Lisong Xu and Dr. Byrav

Ramamurthy. Their guidance and insights over the years have been invaluable to

me. I would like to thank Dr. Sharad Seth, Dr. Witty Srisa-an and Dr. Srikanth

Iyengar for serving as my Ph.D committee members and reading my dissertation. I

also thank Dr. Jitender Deogun for introducing me to advanced algorithms, which

was very helpful for my research and job interviews. I thank Dr. Stephen Hartke,

who taught me nonlinear optimization. His interesting discussions on primal-dual

optimization inspired me to conduct research on resource allocation. I also owe

thanks to Zhipeng Ouyang and Peng Yang, who helped me with various problems

(technical and otherwise).

Before coming to the University of Nebraska-Lincoln, I spent seven years in

Xi’an Jiaotong University, Xi’an, China, where I decided to work on computer

networking. I thank Dr. Xiaohong Guan, Dr. Wei Li and my former colleague

Guodong Li for both introducing computer networking to me and continuous

support after my graduation from Xi’an Jiaotong University.

I must thank my wife Jie Feng and my family members in China, who support

me a lot both emotionally and financially. Without their endless love and

encouragements I would have never completed this dissertation.

www.manaraa.com

5

Contents

1 Introduction 1
1.1 Peer-to-Peer (P2P) Streaming Systems 1
1.2 Design of Single-Channel P2P Streaming

Systems . 3
1.3 Problems in Designing Multi-Channel P2P

Streaming Systems . 5
1.4 Our Contributions . 7
1.5 Our Publications . 10

2 Improving Multi-View P2P Streaming With Divide-And-Conquer 11
2.1 Motivation and Introduction to Multi-View P2P Streaming 11
2.2 Comparison With Existing Systems 16

2.2.1 Related work on multi-view P2P streaming 16
2.2.2 Related work on intra-channel block scheduling 18
2.2.3 Related work on inter-channel cooperation and P2P streaming

theory . 19
2.3 The Divide And Conquer Protocol (DAC) 19

2.3.1 Motivating Example . 20
2.3.2 Divide and Conquer Strategy 22
2.3.3 Optimal Bandwidth Allocation 23
2.3.4 Measuring System Information Required by the Allocations . . 30
2.3.5 Distributing Allocation Results to Users 33
2.3.6 DAC Dynamics . 34

2.4 Simulation Results . 35
2.4.1 Simulation Setup . 36
2.4.2 Group I: Impact of the Sampling Method on DAC 41
2.4.3 Group II: Flexibility Evaluation DAC vs. AAO 44
2.4.4 Group III: Performance Evaluation of DAC vs. ISO 45
2.4.5 Group IV: Intra-channel streaming quality evaluation for DAC 52

2.5 Chapter Summary . 54

www.manaraa.com

3 Exploring The Design Space Of Multi-Channel Peer-to-Peer Stream-
ing Systems 55
3.1 Three Designs For Multi-Channel P2P Streaming System 55
3.2 Comparison With Existing Work . 59
3.3 Linear Programming Models, Network Flow Graphs and Insights For

Multi-Channel P2P Streaming Designs 61
3.3.1 Linear programming models for the three designs 61
3.3.2 Network-flow graphs for the three designs 68
3.3.3 ACA model with overhead . 70
3.3.4 Discussions of implementation complexity 74

3.4 Two-channel P2P streaming systems 76
3.4.1 The closed-form discriminant for homogenous two-channel sys-

tem with PCA Design . 76
3.4.2 The closed-form discriminant for homogenous two-channel sys-

tem with ACA Design . 79
3.4.3 The closed-form discriminant for homogenous two-channel sys-

tem with NBA design . 80
3.4.4 Discussion . 81

3.5 Numerical Results . 83
3.5.1 Experiments Setup . 83
3.5.2 Simulation Parameters . 86
3.5.3 Multi-Channel Systems With homogeneous Streaming Rate . . 89
3.5.4 Multi-Channel Systems With Heterogeneous Streaming Rates 91

3.6 Discussion and Chapter Summary . 94

4 Statistically Guaranteed Streaming Quality for P2P Live Streaming 96
4.1 Admission Control Problem in P2P Streaming Systems 96
4.2 Comparison With Existing Work . 99
4.3 Problem Formulation . 100
4.4 Admission Control Algorithms . 103
4.5 Numerical Results . 106

4.5.1 Blocking Rate of Ordinary Users 107
4.5.2 Retry Robustness . 108
4.5.3 User-Behavior Insensitivity . 109

4.6 Chapter Summary . 112

5 On Providing Optimal Quality of Service in P2P Streaming Systems113
5.1 Bandwidth Allocation and Block Scheduling in P2P Streaming Systems 113
5.2 Comparison With Existing Work . 116
5.3 Models for bandwidth allocation and content scheduling in P2P stream-

ing . 118
5.3.1 Bandwidth Allocation (BA) Model 122
5.3.2 Content Scheduling (CS) Model 122

6

www.manaraa.com

5.3.3 Characteristics of BA and CS 125
5.3.4 BA-CS Game and Equilibrium Concept 127

5.4 Interaction of BA-CS: A Game-Theoretic Analysis 130
5.4.1 Social Optimality under Same Objectives 130
5.4.2 Examples of Performance Loss 132
5.4.3 General Prices and Performance Loss 135

5.5 Simulations . 140
5.5.1 Simulation Setup . 141
5.5.2 Simulation Results and Discussions 145

5.6 Chapter Summary . 153

6 Conclusion and Future Work 154
6.1 Conclusion . 154
6.2 Future Work . 155

Bibliography 158

www.manaraa.com

8

List of Figures

1.1 Example of three overlays for three channels. 6
1.2 Overlay of channel B with 1 streaming server and 6 peers. 7
1.3 Dissertation Organization and Chapter Relationship. 8

2.1 Multi-View Internet TV application. 12
2.2 Multi-camera live streaming of stock-car racing. 12
2.3 The overlapping overlays for a multi-view system with three channels. 21
2.4 DAC splits three physically overlapping P2P overlays into three logi-

cally disjoint P2P overlays. 22
2.5 A resource allocation graph for a multi-view P2P streaming system

with three channels A, B and C. 24
2.6 DAC periodically performs the divide-and-conquer strategy every ∆t

time interval in response to user dynamics. 35
2.7 Three types of channel structures: a) chain, b) mesh, and c) star. . . 38
2.8 Population distribution of chain structure with 3 channels, beta distri-

bution with parameters (1,1). 39
2.9 Population distribution of mesh structure with 3 channels, beta distri-

bution with parameters (2,2). 40
2.10 Population distribution of star structure with 4 channels, beta distri-

bution with parameters (0.8, 0.8). 40
2.11 Impact of collision number β on sampling accuracy in a static system. 41
2.12 Sampling a dynamic system. 42
2.13 Sampling overhead of a static system with 200,000 peers and a dynamic

system with user arrival rate 10 users/second. 42
2.14 For large enough β, the performance of DAC is insensitive to the value

of β. 43
2.15 DAC provides good streaming quality for various resource indices;

AAO requires more bandwidth to achieve similar performance. 44
2.16 AAO streaming quality decreases as the number of neighbors increases

due to inefficient bandwidth utilization; DAC always achieves good
performance. 44

2.17 AAO’s streaming quality fluctuates with different video streaming rates;
DAC always achieves good performance. 45

www.manaraa.com

2.18 DAC outperforms ISO in systems with a chain channel structure when
the number of peers increases from an intermediate scale to a large scale. 46

2.19 DAC outperforms ISO in systems with a mesh channel structure when
the number of peers increases from an intermediate scale to a large scale. 46

2.20 DAC outperforms ISO in systems with a star channel structure when
the number of channels increases from small to large. 47

2.21 DAC outperforms ISO in dynamic systems for a large scale network. . 48
2.22 Number of peers watching channel D with arrival rate 6 user/second

and average life time 8 minutes. 49
2.23 The average packet delivery ratio of channel D (calculated every 10

seconds), DAC execution interval is 2 minutes VS 4 minutes. 49
2.24 The CDF of users’ life time from real trace. 50
2.25 Number of peers watching channel D with arrival rate 6 user/second

and average life time retrieved from the real trace. 50
2.26 The average packet delivery ratio of channel D (calculated every 10

seconds). 51
2.27 DAC provides a better packet delivery ratio to a channel with a high

priority, when the total upload bandwidth is insufficient. 51
2.28 The average packet arrival delay of the 1,800 seconds simulations (cal-

culated every 10 seconds). 52
2.29 The average control packet rate of the 1,800 seconds simulations (cal-

culated every 10 seconds). 53
2.30 CDF of 0.99 playback delay of peers in the worst channel. 53

3.1 A resource allocation graph for a multi-channel P2P streaming system
with two channels A and B. 68

3.2 The network flow graph for 2-channel PCA model. The notations on
edges denote the edge capacities. 71

3.3 The network flow graph for 2-channel ACA model. The notations on
edges denote the edge capacities. The dashed lines denote virtual edges. 71

3.4 The network flow graph for 2-channel NBA model. The notations on
edges denote the edge capacities. We assume that rA = rB. 71

3.5 Feasible regions of the three designs when r
u
≤ 0.5. All the three

designs have the same feasible region. 82
3.6 Feasible regions of the three designs when r

u
= 0.65. PCA and ACA

have larger feasible region, when r
u
> 0.65. 82

3.7 Feasible regions of the three designs when r
u

= 0.85. When r
u

increases,
the feasible regions of all three designs decreases. 82

3.8 Three types of channel structures: a) chain, b) mesh, and c) star. . . 84
3.9 Population distribution of mesh structure with 3 channels, beta distri-

bution with parameters (2,2). 85
3.10 Bandwidth distribution of chain structure with 3 channels, beta distri-

bution with parameters (1,1). 86

9

www.manaraa.com

3.11 Five population distributions with their corresponding beta parameters. 87
3.12 Examples of other beta distributions used for control bandwidth and

population distributions. 88
3.13 Average number of views for different channel structures of different

simulations. 93

4.1 A state-dependent processor-sharing (PS) queueing model for a channel
of a P2P live streaming system with two types of users: super users
and ordinary users. 102

4.2 DUAC makes an admission decision based on the current channel state,
and then has the smallest blocking rate among all three admission
control algorithms in order to achieve a required bandwidth guarantee
probability. 108

4.3 SUAC is not robust in case of user retries. That is, the bandwidth
guarantee probability achieved by SUAC highly depends on how many
times a rejected user retries its admission request. 108

4.4 The state distribution of SUAC and SSUAC is insensitive to the life-
time distribution, but that of DUAC is sensitive (although only slightly).
This is consistent with Theorem 7. 110

4.5 The bandwidth guarantee probability of SUAC and SSUAC does not
depend on the lifetime distribution, and that of DUAC depends slightly
on the lifetime distribution. 110

4.6 The state distribution of all three algorithms is sensitive to the user
arrival processes. 110

4.7 The bandwidth guarantee probability of SUAC slightly depends on the
arrival processes, and that of SSUAC and DUAC highly depends on
the arrival process. 111

5.1 Interaction between BA and CS. 116
5.2 An example of performance loss: 1000-orders of magnitude higher than

the cost of optimal flow. 134
5.3 An example of performance loss using push-based method. 135
5.4 Cost function of block scheduling, which is used by OPT, MIN+PL

and MIN+QUEUE. Note that the smallest cost is 1. 142
5.5 Piece-linear cost function of bandwidth allocation with Ci = 10, which

is used by MIN+PL. 143
5.6 Queueing delay cost function of bandwidth allocation with Ci = 10,

which is used by MIN+QUEUE. 144
5.7 Average delivery ratio of a P2P streaming system with 500 peers and

resource index 1.0. 147
5.8 Average upload bandwidth utilization ratio of a P2P streaming system

with 500 peers and resource index 1.0. 147

10

www.manaraa.com

5.9 Average block request cost of a P2P streaming system with 500 peers
and resource index 1.0. 147

5.10 Average delivery ratio of a P2P streaming system with 500 peers and
resource index 1.2. 148

5.11 Average upload bandwidth utilization ratio of a P2P streaming system
with 500 peers and resource index 1.2. 148

5.12 Average block request cost of a P2P streaming system with 500 peers
and resource index 1.2. 148

5.13 Average delivery ratio of a P2P streaming system with 5000 peers and
resource index 1.2. 149

5.14 Average upload bandwidth utilization ratio of a P2P streaming system
with 5000 peers and resource index 1.2. 149

5.15 Average block request cost of a P2P streaming system with 5000 peers
and resource index 1.2. 150

5.16 Scheduling cost changes of a P2P streaming system with 500 peers and
resource index 1.0. 150

5.17 Scheduling cost changes of a P2P streaming system with 500 peers and
resource index 1.2. 151

5.18 Scheduling cost changes of a P2P streaming system with 5000 peers
and resource index 1.2. 151

5.19 Simulation cost ratio vs Theoretical Bound. 151

www.manaraa.com

List of Tables

2.1 The Comparison of Three Protocols 17

3.1 Relative feasible solution space size of PCA design for 300 Kbps stream-
ing rate . 90

3.2 Relative feasible solution space size of NBA design for 300 Kbps stream-
ing rate . 90

3.3 Relative feasible solution space size of ACA design for 300 Kbps stream-
ing rate . 90

3.4 Relative feasible solution space size of PCA design for heterogenous
streaming rates . 92

3.5 Relative feasible solution space size of NBA design for heterogenous
streaming rates . 92

3.6 Relative feasible solution space size of ACA design for heterogenous
streaming rates . 92

4.1 Notation . 101

5.1 Key Notation Summary . 119
5.2 Bound of Content Scheduling Cost 140

www.manaraa.com

1

Chapter 1

Introduction

1.1 Peer-to-Peer (P2P) Streaming Systems

Internet users are watching more and more videos online through video websites

(e.g., Youtube [1]). Comscore [2], the leading digital media measurement company,

recently released the data of users watching online videos in the U.S. during March,

2010. According to this data, over 180 millions Internet users in the U.S. watched

31.2 billion videos in March 2010 and Youtube (the world’s largest online video web-

site) accounted for about 41% of these videos. Therefore, providing smooth video

streaming service to Internet users is a very important problem. Several solutions

have been proposed to provide high-quality video streaming service, which fall into

two categories: 1) Delivering video streams over private IP networks based on a

combination of multicast and unicast (e.g., U-verse service provided by AT&T [3]);

and 2) Deploying a large number of dedicated streaming servers (e.g., Youtube uses

Content Delivery Network to serve millions of users). Both solutions have limita-

tions. The private IP networks can only be used for delivering video streams within

a single Internet Service Provider (ISP) and require capital investments on building

www.manaraa.com

2

these networks. Content Delivery Network (CDN) based solutions mainly suffer the

scalability problem, which means that the number of content delivery servers has to

proportionally increase with the number of users to maintain continuous playback.

Nowadays, users usually access the Internet via high-speed connections (e.g., DSL,

Cable), which makes it possible to deliver video streams by efficiently utilizing the

user’s upload bandwidth1. The basic design rationale of Peer-to-Peer (P2P) stream-

ing systems is to encourage users2 (peers) to upload video streams in their buffers to

neighboring peers, while downloading fresh video streams. P2P streaming systems

leverage the public Internet for video distribution and reduce server bandwidth con-

sumption by using participating peer’s upload bandwidth. Note that P2P streaming

systems are different from traditional P2P file sharing systems (e.g., Bittorrent [20]) in

various aspects, which lead to more challenging tasks of designing streaming systems.

For example, video streams are divided into blocks and these blocks have critical time

constraints (i.e., a requested block should arrive at a peer before its corresponding

playback deadline).

P2P streaming systems have attracted research and development efforts, where

the academia mainly focus on seeking optimal designs to achieve the theoretical per-

formance bounds (e.g., minimizing the latency for packet delivery [50] [101], max-

imizing the peer’s bandwidth utilization [88] [89], etc.) and the industry mainly

focuses on maximizing the user perceived streaming quality with seemingly sim-

ple designs. More recently, commercial P2P streaming systems (PPLive [66], PP-

Stream [67], UUSee [77]) have begun to support multiple channels (e.g., with UUSee

client, a peer is able to choose programs from nearly 10,000 channels) and a peer

1In P2P literature, it is widely accepted that bandwidth bottlenecks occur at network edges
instead of the network core and download bandwidth is much higher than upload bandwidth at
network edges [18].

2We hereinafter use the terminologies user and peer interchangeably to refer to an Internet user
in a P2P streaming system.

www.manaraa.com

3

is allowed to watch more than one channel at a time. We refer to such systems as

multi-channel P2P streaming systems. In this dissertation, we study fundamental

problems in designing multi-channel P2P streaming systems.

For a clear understanding of our dissertation research, in Section 1.2, we first

introduce some necessary background material on single-channel P2P streaming sys-

tems. Then, we introduce the fundamental problems in multi-channel P2P streaming

systems, solved in this dissertation, in Section 1.3. Finally, we briefly highlight our

contributions in Section 1.4.

1.2 Design of Single-Channel P2P Streaming

Systems

In a single-channel P2P streaming systems, peers are organized into a virtual topology,

called an overlay, where each peer maintains a set of virtual links with other peers

watching the same channel. Similar to IP multicast [25], early P2P streaming designs

adopt a tree-based overlay, where the streaming server serves as the root of the tree.

Peers are located at different levels of the tree and peers from lower levels receive

video contents from either the root (i.e., streaming server) or from peers in upper

levels. The tree-based topology has two disadvantages: 1) the upload bandwidth of

leaf peers cannot be utilized by others, since they do not have child peers; and 2) the

tree-based overlay is not resilient to peer churn (e.g., a peer leaves the overlay or a

peer suffers a connection failure). Overcast [37] and End System Multicast [19] are

examples of tree-based P2P streaming systems.

To overcome the first drawback of tree-based systems, an improvement, referred to

as multi-tree based systems, was proposed in [55], where the video stream is divided

into substreams and each substream is delivered over its corresponding subtree. A leaf

www.manaraa.com

4

peer of one subtree could be an internal node of another subtree. With a multi-tree

overlay, the leaf peer’s upload bandwidth can be used by other peers. The multi-tree

based P2P streaming systems have higher utilization of peers’ upload bandwidth,

which, however, are not widely used in commercial deployments, mainly due to the

following two reasons. First, it introduces control overhead and implementation com-

plexity to P2P streaming systems, since this design has to maintain multiple trees

overlays. Second, multi-tree systems are not resilient to peer churn either.

Due to the disadvantages of tree-based topologies, mesh-based overlays are widely

used by both academia [101] [104] and industry [66] [67] [77]. In a mesh-based overlay,

each peer maintains several neighbors in the system and there is no strict parent-

child relationship between any two connected peers, which indicates that the two

peers can download data from each other. Since a peer can download data from

multiple neighbors, the mesh-based systems are resilient to peer churn. In practical

implementations, when joining a mesh-based overlay, a peer first contacts with the

tracker server, which maintains the information of online peers. Then, the tracker

server returns a list of peer IDs (e.g., a peer’s IP address) to the newly joined peer

and the peer selects some of the returned peers as its neighbors. Since mesh-based

overlays are resilient to peer churn and have low implementation complexity, in this

dissertation, we adopt the mesh-based overlays. Note that our work can be extended

to tree-based systems with minor revisions, because our established analytical models

are independent of overlay structures and our simulation implementations can be

changed to tree-based overlays.

www.manaraa.com

5

1.3 Problems in Designing Multi-Channel P2P

Streaming Systems

As introduced in Section 1.2, peers watching the same channel construct an overlay

network, where peers utilize their upload bandwidth to deliver useful video contents

to their neighbors. Therefore, the total bandwidth contributed by peers in a specific

overlay is critical to the streaming quality of that channel [40] [102]. In multi-channel

P2P streaming systems, each channel maintains its own overlay and a peer might join

multiple overlays, in that it can watch multiple channels at a time (e.g., using the

Picture-in-Picture function provided by PPStream [67]). Figure 1.1 shows an example

of three channels. The overlays for the three channels are overlapped, since peers U2,

U3, U5 and U6 join multiple overlays. Based on measurement studies in large-scale P2P

streaming networks [32] [33], the bandwidth available across different channels is not

uniform. It means that some channels have surplus bandwidth, while some others

suffer bandwidth deficit. The bandwidth allocation problem in multi-channel P2P

streaming systems is to optimally allocate bandwidth among all channels, so that the

channels with surplus bandwidth help other channels suffering from bandwidth deficit.

It is a fundamental problem in designing multi-channel P2P streaming systems. For

example, suppose that channel A in Figure 1.1 has surplus bandwidth and channel B

does not have sufficient bandwidth to support all peers watching channel B. In this

case, a good design is to allocate more bandwidth of the peers joining both channels

(i.e., U2 and U3) to channel B than to channel A.

Besides the bandwidth allocation problem, there is another equally important

problem in P2P streaming systems, namely block scheduling, which determines how

to optimally utilize the allocated bandwidth to deliver useful video streams to peers

before their corresponding playback deadlines. In P2P streaming systems, the video

www.manaraa.com

6

A streaming server

A user watching
only one channel

A user watching
multiple channels

P2P overlay

for channel C
P2P overlay

for channel B
P2P overlay

for channel A

U1 U3

U4

U6

U7

U8

U9

U2

U5

Figure 1.1: Example of three overlays for three channels.

stream is usually divided into fixed-size blocks [66] [67] [77] and peers in a channel

request useful blocks (i.e., the missing blocks in their playback buffers) from their

neighbor peers, which are also watching that channel. We continue to use the 3-

channel case shown in Figure 1.1 to explain block scheduling. Let us take channel

B as an example. Figure 1.2 shows the overlay of channel B, which is exactly the

same as channel B’s overlay in Figure 1.1. We omit channels A and C, in that

after peers watching multiple channels have determined how much bandwidth should

be allocated to channels A, B and C, the three overlays can be considered as three

separated overlays. In Figure 1.2, U4 holds blocks with sequence numbers 3 and 4 and

U5 holds block 4. If U6 pulls blocks from U4 and U5, block scheduling algorithms help

U6 determine to pull which block from which neighbor, considering the bandwidth

constraints on overlay links (U4, U6) and (U5, U6).

In this dissertation, we first study bandwidth allocation in multi-channel P2P

streaming systems and then we provide insight into the interaction between band-

width allocation and block scheduling. In Section 1.4, we briefly highlight our con-

tributions in the following chapters.

www.manaraa.com

7

8

3 4

3

Streaming Server

with sequence number 3
Block held by server peer

Peer

4

U

U

U

U

U
2

4

5

6

U 3

Figure 1.2: Overlay of channel B with 1 streaming server and 6 peers.

1.4 Our Contributions

Figure 1.3 shows the relationship among different chapters, where the root prob-

lem solved in this dissertation is resource allocation. Chapters 2 and 3 can be read

together, in that Chapter 2 proposes a protocol corresponding to a specific design

studied in Chapter 3. Chapters 4 and 5 can be read independently. Background

knowledge and comparisons with existing works are covered in each chapter, when

necessary. We provide an overview of each chapter below.

In Chapter 2, we study the emerging multi-view P2P streaming systems, where a

user can simultaneously watch multiple channels. Previous work on multi-view P2P

streaming solves the fundamental inter-channel bandwidth allocation problem at the

individual peer level, which requires specific intra-channel block scheduling proto-

cols (e.g., network coding based protocols). To provide the flexibility of adopting

any existing block scheduling protocols, we propose a new protocol for multi-view

P2P streaming, called Divide-and-Conquer (DAC), which efficiently solves the inter-

channel bandwidth allocation problem at the channel level. Our DAC protocol is

more suitable for upgrading current single-view P2P streaming systems (i.e., a peer is

allowed to watch only one channel at a time) to multi-view P2P streaming systems.

www.manaraa.com

8

bandwidth

Resource

Allocation

Interaction between
Bandwidth Allocation
and Block Scheduling

Chapter 3:

Comparing

designs that

enables cross−

channel band−

width alloca−

tion

Chapter 2:

A protocol

enabling

cross−channel

bandwidth

allocation

 Chapter 5:

Jointly solving

bandwidth

allocation and

block schedul−

ling for optimal

QoS

Bandwdith Allocation

in P2P Streaming Systems

Chapter 4:

Designing add−

mission con−

trol protocols

when there is

insufficient

Figure 1.3: Dissertation Organization and Chapter Relationship.

Our packet-level simulations show that DAC is efficient in allocating the overall sys-

tem bandwidth among different channels, is flexible in working with various block

scheduling protocols, and is scalable in supporting a large number of users and chan-

nels.

In Chapter 3, we extend our work in Chapter 2 to compare existing and potential

designs in multi-channel P2P streaming systems. We focus on the following funda-

mental problems: 1) what are the general characteristics of existing and potential

designs? and 2) under what circumstances, should a particular design be used to

achieve the desired streaming quality with the lowest implementation complexity?

To answer the first question, we propose simple models based on network flow graphs

for three general designs, namely Naive Bandwidth allocation Approach (NBA), Pas-

sive Channel-aware bandwidth allocation Approach (PCA) and Active Channel-aware

bandwidth allocation Approach (ACA) respectively, which shed insight into under-

www.manaraa.com

9

standing the key characteristics of cross-channel bandwidth sharing. For the second

question, we first develop closed-form results for two-channel systems. Then, we use

extensive numerical simulations to compare the three designs for various peer pop-

ulation distributions, upload bandwidth distributions and channel structures. Our

analytical and simulation results show that: 1) the NBA design can rarely achieve

the desired streaming quality in general cases; 2) the PCA design can achieve the

same performance as the ACA design in general cases; and 3) the ACA design should

be used for special applications.

Most of the literature on P2P streaming focuses on how to provide best-effort

streaming quality by efficiently using the system bandwidth; however, there is no

guarantee about the provided streaming quality. In Chapter 4, we consider how to

provide statistically guaranteed streaming quality to a P2P streaming system and

study a class of admission control algorithms. Our results show that there is a trade-

off between the user blocking rate and user-behavior insensitivity (i.e., whether the

system performance is insensitive to the fine statistics of user behaviors). We also find

that the system performance is more sensitive to the distribution of user inter-arrival

times than to that of user lifetimes.

The quality of service in P2P streaming systems highly depends on the proto-

cols used for solving bandwidth allocation and block scheduling problems. Existing

algorithms solve the two problems separately. However, directly combining optimal

solutions to the two separate problems does not necessarily lead to system-wide op-

timal solutions. In Chapter 5, we seek methods of designing protocols to provide

system-wide optimal quality of service in P2P streaming systems and propose design

guidelines. We first establish two generic nonlinear optimization models for designing

distributed protocols, which are used to solve the two problems. We also provide

a detailed analysis on when and how system-wide optimal streaming quality can

www.manaraa.com

10

be achieved via a two-player game theoretic model. Briefly, the system-wide sub-

optimal streaming quality is due to the misaligned objectives of bandwidth allocation

and block scheduling. Moreover, if the objectives are misaligned, the system-wide

streaming quality could be arbitrarily low, though each individual problem is solved

optimally. To validate our analysis, we design and implement three groups of band-

width allocation and block scheduling algorithms using a packet-level simulator. Both

our analytical models and implementations can be applied directly to design protocols

for specific applications.

1.5 Our Publications

Our earlier work on neighbor selection [80] in multi-channel P2P streaming systems

was presented at the IEEE International Conference on Computer Communications

and Networks, IPMC Workshop 2008. Our work on multi-view P2P streaming sys-

tems [81] was presented at IEEE Peer-to-Peer Computing 2009 and a longer version

has been submitted to the leading journal, Computer Networks [85]. Our work on ad-

mission control [82] was presented at ACM Network and Operating System Support

for Digital Audio and Video 2009. The work of comparing multi-channel P2P stream-

ing systems was presented at IEEE International Conference on Computer Communi-

cations 2010 [86] and IEEE International Workshop on Local and Metropolitan Area

Networks 2010 [83]. A longer version of multi-channel P2P streaming comparison has

been submitted to the top journal IEEE Transactions on Networking [84]. Our work

on jointly solving bandwidth allocation and block scheduling has been submitted to

a leading conference [87].

www.manaraa.com

11

Chapter 2

Improving Multi-View P2P

Streaming With

Divide-And-Conquer

2.1 Motivation and Introduction to Multi-View P2P

Streaming

Peer-to-peer (P2P) live streaming systems have been extensively studied [51], and

most of the earlier works focus on single-view P2P live streaming, where a user can

subscribe to and watch only one channel at a time. Multi-view1 P2P live streaming has

recently emerged, where a user can simultaneously subscribe to and watch multiple

channels. For example, PPStream [67] supports a limited multi-view capability with

the picture-in-picture feature.

In general, multi-view P2P streaming can be used in two types of applications: 1)

1We use multi-view to refer to the case where a user can simultaneously join multiple different
channels. These channels are not necessarily correlated like in a multi-view video system by the
video coding community.

www.manaraa.com

12

Multi-View Internet TV Applications: Fig 2.1 illustrates a possible case where a user

can enjoy a high-quality movie channel shown in a large window, while still being

able to monitor the weather information on another channel displayed in a small

window; 2) Multi-Camera Live Streaming Applications: Fig 2.2 illustrates a possible

case where a user can watch a stock-car race from several selected cameras, such as

a pit-box camera, a corner camera, and a driver’s point-of-view camera.

Figure 2.1: Multi-View Internet TV application.

Figure 2.2: Multi-camera live streaming of stock-car racing.

Since a peer might simultaneously watch multiple channels, its downstream neigh-

bors from different channels will compete for its upload bandwidth, which is referred

to as the inter-channel bandwidth competition problem and is unique in multi-view

systems. Based on measurement studies [33] [42], the upload bandwidth of differ-

ent channels in P2P streaming systems are unbalanced. Therefore, when designing

multi-view systems, the inter-channel bandwidth competition problem should be op-

timally solved taking into account bandwidth imbalance among different channels,

www.manaraa.com

13

which makes it fundamentally different from designing single-view systems.

While the inter-channel bandwidth competition problem is important for multi-

view P2P streaming, another equally important problem is the choice of the streaming

protocol used within a channel (referred to as the intra-channel streaming problem).

A streaming protocol includes both an overlay construction method and a block

scheduling algorithm, and it greatly influences the system streaming quality. Various

streaming protocols [51] have been well studied and tested in single-view P2P stream-

ing systems. Since most commercial systems construct a mesh-based topology which

is resilient to peer churns, in this chapter, we also use a mesh overlay topology and

focus on various block scheduling algorithms when studying streaming protocols.

Wu et al. [88] [89] first proposed a protocol for multi-view systems by solving the

inter-channel bandwidth allocation problem based on game theory. Specifically, all

users in a multi-view P2P streaming system participate in a decentralized collection of

bandwidth auctions with the goal to optimally allocate the system bandwidth among

different channels and then the peers utilize the allocated bandwidth with some intra-

channel streaming protocol. However, since the inter-channel bandwidth competition

problem is solved at the individual peer level, it limits choices of streaming proto-

cols to those that can efficiently use the bandwidth allocated for each pair of users

(i.e., network-coding-based streaming protocols). Their proposed approach solves

both inter-channel bandwidth competition and intra-channel streaming problems all

at once, referred to as AAO. In addition, decentralized auctions require message ex-

changes among all peers in the system, which introduces high control overhead. Even

though network coding has been proven to be feasible for P2P live streaming [79],

especially with relatively cheap GPU [73], few commercial P2P streaming systems

actually use it due to various reasons (e.g., the implementation cost, new hardware

requirements at end users, etc.). Based on the current report [77], only UUSee imple-

www.manaraa.com

14

ments network coding. More importantly, since there is no single streaming protocol

that is better than all other streaming protocols in every aspect, commercial P2P

streaming systems actually use different streaming protocols for different purposes.

Therefore, in this chapter, we are interested in the following problem: Can we design a

protocol for multi-view P2P live streaming that can efficiently solve the inter-channel

bandwidth competition problem and is flexible enough to incorporate any streaming

protocol?

In order to design the new protocol for multi-view systems, we will solve three

challenging problems, which correspond to three design goals of the new protocol.

• Flexibility problem: The system should be able to incorporate various intra-

channel streaming protocols. Therefore, the new protocol should solve the

inter-channel bandwidth competition problem with minimum changes at each

individual peer. The AAO does not have the flexibility, since it requires each

peer to participate in auctions and requires network coding to fully utilize the

allocated bandwidth.

• Efficiency problem: The system should achieve a good overall streaming quality

(e.g., packet delivery ratios, packet delays) for all users across all channels. Since

the upload bandwidth is very important for streaming quality [40] and the band-

width is unbalanced among different channels in P2P streaming systems [33], it

requires a method that optimally solves the inter-channel bandwidth competi-

tion problem.

• Scalability problem: The new protocol should be able to maintain a good overall

streaming quality in a large-scale system with a large number of channels and

users.

Inspired by the divide and conquer strategy, DAC first divides the overall system

www.manaraa.com

15

problem into several small channel problems, and then solves each channel problem

separately. Specifically, DAC first solves the inter-channel competition problem to

optimally allocate the bandwidth to different channels, and then solves the intra-

channel streaming problem individually to achieve a good streaming quality for each

channel.

Flexibility and scalability are achieved by the divide and conquer strategy, in that

it solves the inter-channel bandwidth competition problem and intra-channel stream-

ing problem separately and divides the large problem into several smaller problems.

Since DAC solves the inter-channel bandwidth competition at the channel level, one

challenge of using divide and conquer strategy is how to effectively measure the infor-

mation of each channel (e.g., the total upload bandwidth demand and supply), so as

to achieve a reasonably good accuracy with affordable measurement overheads. DAC

uses the statistical sampling method based on continuous-time random walk, which

satisfies the accuracy and overhead requirements.

For the efficiency goal, DAC allocates the upload bandwidth to different channels

according to their demands via our proposed utility-based optimal resource allocation

model. This model is aware of the inter-channel bandwidth competition and has

a larger feasible region than [89] (refer to Section 2.3.3). We evaluate DAC with

extensive and carefully designed packet-level simulations and the results show that

DAC meets the three design goals well.

The rest of this chapter is organized as follows. Section 2.2 briefly summarizes

the related work. Section 2.3 describes implementation details of the DAC protocol.

Section 2.4 evaluates the performance of DAC with extensive packet-level simulations.

Section 2.5 summarize this chapter.

www.manaraa.com

16

2.2 Comparison With Existing Systems

2.2.1 Related work on multi-view P2P streaming

There is very little work on multi-view P2P streaming. Liang et al. [45] present a gen-

eral framework for future IPTV based on multi-view P2P streaming, which supports

content-based channel selection, multi-channel view customization, and semantics-

aware bandwidth allocation. However, they only consider how to allocate the down-

load capacity of a user to different channels. In contrast, our work focuses on how to

allocate the upload capacity of a user to different channels, since the upload capacity

is a more precious resource than the download capacity in the current Internet. Wang

et al. [80] study the neighbor selection problem in multi-view P2P streaming systems

and propose a simple neighbor selection algorithm based on peers’ subscribed chan-

nels and upload bandwidth. However, they do not consider how to optimally allocate

the upload bandwidth of peers watching multiple channels.

The most related works are [88, 89] by Wu et al., which tackle the inter-channel

competition and intra-channel streaming simultaneously via organizing decentralized

collections of bandwidth auctions at the peer level (AAO). Even though the proposed

protocol has been proved to achieve Nash Equilibrium and optimal allocation with

tight constraints, it requires network coding for intra-channel streaming, which lim-

its its flexibility of using the existing intra-channel streaming protocols (e.g., random

block scheduling). Compared with [88, 89], we solve the two problems separately with

the goal of providing a flexible framework for existing protocols as well as achieving

a good overall performance for all channels. In Table 2.1, we compare the three pro-

tocols DAC, AAO 2 and ISO. ISO is a direct extension from single-view systems and

different channels are always isolated from one another (refer to Section 2.4). Dynam-

2Note that AAO refers to the protocol designed by Wu et al. [88] hereinafter, unless explicitly
explained

www.manaraa.com

17

ics refer to the peer churn. AAO converges quickly when the total bandwidth supply

is greater than the total bandwidth demand; while DAC always converges due to the

relaxed constraints. There is also extensive research work on related applications,

(e.g., multi-party and multi-stream systems [95, 96]), which include multi-camera

video conferencing and 3D tele-immersion. They usually consider a small number

of relatively stable users due to the real-time interactivity constraint, whereas our

multi-view P2P streaming applications consider a large number of dynamic users.

Table 2.1: The Comparison of Three Protocols
Design DAC AAO ISO
Concerns
Rationale Solving the Solving the Solving the

inter-channel bandwidth inter-channel bandwidth intra-channel
competition problem competition problem streaming problem
and the intra-channel and the intra-channel only
streaming problem streaming problem
separately simultaneously

Flexibility No restriction Requiring network No restriction
on intra-channel coding based on intra-channel
streaming protocol intra-channel streaming streaming protocol

protocol
Efficiency Modeling the bandwidth Modeling the bandwidth Cannot efficiently

competition problem competition problem use peers’
with Relaxed with Tight bandwidth of all
Constraints for a Constraints for a channels
larger feasible region smaller feasible region

Scalability Supports a large Supports a large Supports a large
number of peers number of peers number of peers
and channels and channels and channels

Dynamics Pause DAC in Use old values and -
high dynamics loosely synchronized

Convergence Yes, < 10 sec for 32 Conditional, < 10 sec for -
channels 20,000 peer 4 channels 20,000 peers

www.manaraa.com

18

2.2.2 Related work on intra-channel block scheduling

In general, intra-channel streaming in a P2P streaming system consists of overlay

construction and intra-channel block scheduling. Since most of the commercial P2P

streaming systems deployed over the Internet are mesh-based [67], which is resilient

to peer churns, in this subsection, we only briefly summarize various block scheduling

algorithms. Random scheduling is proposed, due to its simplicity and high perfor-

mance with proper configuration [102]; Adaptive queue based chunk scheduling [30],

min-cost scheduling [101], randomized decentralized broadcasting [58] are examples

of optimal scheduling algorithms to fully utilize the resources and achieve the max-

imum streaming rate. Other scheduling algorithms include rarest-first scheduling

(DONet/Coolstreaming [42]), Chainsaw [62], PRIME [56], etc. Network-coding-

based streaming protocols, based on information theory, enhance the traditional block

scheduling algorithms mentioned above, since they allow information mixture in peers,

which simplifies the block scheduling and increases the data diversity. Wang et al. [79]

perform a reality check for network coding and [103] proposed a market model for

applying network coding. However, few (if any) commercial P2P streaming systems

actually use network coding due to various reasons (e.g., it requires extra computation

at end users for coding/decoding, etc.). The coexistence of different block scheduling

algorithms implies that there is no single intra-channel streaming protocol that is

better than all other streaming protocols in every aspect. Therefore, the flexibility to

incorporate various streaming protocols is one of our primary design goals for DAC.

Besides the specific analytical models associated with intra-channel block schedul-

ing algorithms [30] [101] [56], etc., there are some studies on modeling and evaluating

different intra-channel streaming protocols [105] [58] [13]. Zhou et al. [105] compare

the performance of two kinds of intra-channel block scheduling algorithms with a sim-

ple probability model, which is helpful for intra-channel streaming protocol design.

www.manaraa.com

19

Massoulie et al. [58] propose efficient decentralized broadcasting algorithms based on

the network flow model and linear programming. Bonald et al. [13] prove that their

random peer, latest useful chunk algorithm can distribute data chunks at an optimal

rate with bounded delay.

2.2.3 Related work on inter-channel cooperation and P2P

streaming theory

Liao et al. [46] use inter-channel cooperation in their AnySee P2P streaming system

to balance the resources among different channels and optimize the streaming path.

Wu et al. [92] propose the View-Upload Decoupling approach to build multi-channel

P2P streaming systems, which improves the streaming quality and reduces the channel

churn. Although the problems studied by these works also exist in multi-view systems,

the results of these works are mainly about single-view systems, which cannot be used

directly to multi-view systems. Kumar et al. [40] propose a stochastic fluid model

to study the fundamental performance characteristics of single-view P2P systems,

which sheds insights on the relationship between system performance and the channel

resource. We use their work to establish our optimal bandwidth allocation model.

Wu et al. [93] establish queueing network models to analyze the performance of their

VUD design and provide guidelines for building single-view systems with inter-channel

cooperation.

2.3 The Divide And Conquer Protocol (DAC)

In this section, we introduce the proposed DAC protocol from the perspective of how

DAC meets the three design goals. Section 2.3.1 first describes the inter-channel band-

width allocation problem using a simple example and then defines two categories of

www.manaraa.com

20

solutions, which correspond to two different designs of multi-view P2P streaming sys-

tems. We introduce the divide and conquer strategy with examples in Section 2.3.2,

highlighting the design rationale of DAC to achieve flexibility and scalability. Sec-

tion 2.3.3 describes the utility-based optimal bandwidth allocation model and algo-

rithms, which mainly contribute to the goal of efficiency. In Section 2.3.4 and 2.3.5,

we discuss the statistical sampling scheme for channel information measurement and

the distributed method for disseminating bandwidth allocation results to users, re-

spectively, which makes DAC scale well. Finally, Section 2.3.6 describes how DAC

deals with network dynamics (e.g., peer joining/leaving, etc.), which is a critical issue

in all P2P systems.

2.3.1 Motivating Example

In P2P streaming systems, each channel maintains its own overlay. Therefore, peers

watching multiple channels (views) simultaneously join more than one overlay, which

makes the overlays for these channels overlap with each other, as shown in Fig 2.3.

Peers joining multiple overlays can contribute their upload bandwidths to several

overlays, which implies that the peers should determine how to allocate their upload

bandwidth to different overlays (the bandwidth allocation problem). For example, U3

joins three overlays and therefore it can contribute its upload bandwidth to three

channels. Based on the measurement studies [32] [92] [33], the channels in a P2P

streaming system have imbalanced upload bandwidth (i.e., some channels have sur-

plus upload bandwidth; some other channels suffer bandwidth deficit). Thus, an

optimal bandwidth allocation strategy should be aware of the bandwidth imbalance

among different channels, which can be described by a utility-based optimization

model and will be introduced in Section 2.3.3.

Generally, the designs for multi-view P2P streaming systems fall into two cate-

www.manaraa.com

21

A streaming server

A user watching
only one channel

A user watching
multiple channels

P2P overlay

for channel C
P2P overlay

for channel B
P2P overlay

for channel A

U1 U3

U4

U6

U7

U8

U9

U2

U5

Figure 2.3: The overlapping overlays for a multi-view system with three channels.

gories according to the method used for solving the bandwidth allocation problem.

Peer-level design (e.g., AAO [88]), where each peer individually determines how to

allocate its upload bandwidth to its neighboring peers. Peer-level design requires

specific intra-channel streaming protocols (i.e., network coding based protocols) to

control the utilization of allocated bandwidth between the peer and its neighbors,

which limits the flexibility of the design. Channel-level design (e.g., our DAC pro-

tocol), where the group of peers watching the same set of channels makes the same

bandwidth allocation decision based on the bandwidth demand and supply relation-

ship of subscribed channels. It means that every peer in the same group contributes

the same faction of its bandwidth instead of the same amount. For example, U5 and

U6 watch channels B and C. If peer-level design is used, U5 and U6 individually

determine how to allocate their upload bandwidths. By contrast, with channel-level

design, they make the bandwidth allocation decision together. Our DAC protocol is

a channel-level design and does not require the accurate bandwidth utilization con-

trol between the peer and its neighbors, which provides flexibility of incorporating

existing intra-channel streaming protocols. Note that accurate bandwidth utilization

means that for a given set of neighbors, the peer controls the bandwidth utilization

of each individual neighbor, which is a drawback of the existing AAO protocol [89].

In Section 2.3.2, we will introduce the key rationale of our DAC protocol.

www.manaraa.com

22

2.3.2 Divide and Conquer Strategy

We explain the basic idea of DAC with the example shown in Fig 2.4. There are

a total of three channels: A, B, and C. Some users watch only a single channel,

and some users watch multiple channels. All users watching the same channel form a

single P2P overlay for the channel, and there are some overlaps between different P2P

overlays as shown on the left side of Fig 2.4. We do not show the overlay topology

for each channel (i.e., how the users in a P2P overlay are connected to each other), in

order to emphasize that DAC has no specific requirement on the topology of a P2P

overlay.

U1

U2

Overlay A Overlay B

U4

U3

U5 U6

U7

Overlay C

U1

Overlay A

U

U2
A

A
3

U7

U
UU

C

Overlay C

C C

Overlay B

5

5 6
3

U4

U
U U

B

B B
6

U
B
2

3

Streaming Server

Peer watching multiple channels

Peer watching a single channel

Figure 2.4: DAC splits three physically overlapping P2P overlays into three logically
disjoint P2P overlays.

To achieve flexibility and scalability, DAC follows the divide-and-conquer strategy

to divide the overlapped overlays into different independent overlays (corresponding

to different channels). Then, it solves the inter-channel competition at the channel

level, which is different from [88, 89], which solve the problem at the peer level.

Therefore, DAC does not have any specific requirement for intra-channel streaming

protocols. For example, DAC splits three physically overlapping P2P overlays into

three logically disjoint P2P overlays as shown in Fig 2.4. User U2 is split into two

logical users UA
2 and UB

2 , each of which has its own upload capacity and does not

interfere with one another. Note that the upload capacity of physical user U2 is the

sum of the upload capacities of logical users UA
2 and UB

2 .

www.manaraa.com

23

2.3.3 Optimal Bandwidth Allocation

To achieve the efficiency design goal, DAC properly allocates the peers’ upload band-

width to their subscribed channels by considering competitions for upload bandwidth

among these channels due to their upload bandwidth imbalance [88]. As previously

mentioned, DAC solves the bandwidth allocation problem at the channel level based

on the divide and conquer strategy. Therefore, we first describe how DAC efficiently

splits multiple physically overlapping P2P overlays into multiple logically disjoint P2P

overlays by efficiently splitting each physical user into multiple logical users, one for

each subscribed channel.

In order to use the divide and conquer strategy and achieve better scalability,

DAC makes the splitting decision for a group of users who watch the same set of

channels, instead of considering the splitting decision for each individual user. For

example, in Fig 2.4, DAC considers the splitting decision for both U5 and U6 together,

since both of them watch channels B and C. Let Θ denote the set of all channels.

For example, Θ = {A,B,C} for Fig 2.4. For a subset of channels θ ⊆ Θ, let Sθ

denote the set of users, who are watching just the channels in channel set θ. As an

example, if θ = {B,C}, then user set Sθ (also written SBC) denotes the set of users

watching just channels B and C, and in Fig 2.4, SBC = {U5, U6}. A streaming server

is considered as a special user who only contributes its upload capacity and belongs

to the corresponding user set.

For each user set Sθ, DAC considers how to optimally allocate the total bandwidth

of all users in Sθ to all channels c ∈ θ. Intuitively, a user set Sθ provides its upload

bandwidth to some channels and a channel c requests bandwidth from some user

sets, therefore, we call a user set a bandwidth supplier and a channel a bandwidth

consumer. The relationship between suppliers and consumers can be described by

a bipartite resource allocation graph G = (S,D,E), where vertex set S is the set

www.manaraa.com

24

of all suppliers (i.e., S contains Sθ for any θ ⊆ Θ), vertex set D is the set of all

consumers (i.e., D contains c for any c ∈ Θ), and edge set E represents the supplier-

consumer relationship (i.e., e = (Sθ, c) ∈ E iff c ∈ θ). Fig 3.1 illustrates the bipartite

graph with 7 suppliers and 3 consumers for a multi-view P2P streaming system with

M=3 channels: A, B, and C. For example, supplier SBC allocates its bandwidth to

consumers B and C.

Consumers

S BS CSABS ACS BCS SABC

CBA

Suppliers A

Figure 2.5: A resource allocation graph for a multi-view P2P streaming system with
three channels A, B and C.

2.3.3.1 Optimal Bandwidth Allocation Model

With the resource allocation graph G = (S,D,E), we can model the upload band-

width allocation problem as solving the global optimization problem below

max
a≥0

∑
(θ,c)∈E

U θ
c (aθc) (2.1)

subject to

∑
c∈θ

aθc ≤ Bθ ∀θ (2.2)

where Bθ is the total upload bandwidth of all users in Sθ, and aθc is the bandwidth

to be allocated from supplier Sθ to consumer c. U θ
c (·) is the utility function3 of c

associated with bandwidth obtained from Sθ. The constraint means that the total

allocated bandwidth from supplier Sθ cannot exceed its total upload bandwidth.

3A utility function of channel c maps the allocated bandwidth into the streaming quality of that
channel, which is a non-decreasing function of allocated bandwidth.

www.manaraa.com

25

Compared with [88], we relax the constraint that the total allocated bandwidth

should be greater than or equal to the desired bandwidth by each consumer, in order

to guarantee the convergence of the algorithm in the case of bandwidth fluctuations.

The measurement of P2P networks [71] shows that the upload bandwidth fluctuates

frequently due to congestion, jitter, etc. of the underlying physical network and peer

dynamics (e.g., joining/leaving the overlay). Therefore, the model for bandwidth

allocation should consider the bandwidth fluctuation. Otherwise, the convergence

of the allocation algorithm corresponding to the model will be affected when the

fluctuation causes violations of the constraints.

We determine the utility function as follows: the utility obtained by each channel

should be non-decreasing with respect to the allocated bandwidth. To achieve the

efficiency goal, the solution to problem 2.1 allocates bandwidth based on the demand

of each consumer (i.e., to solve the competitions among different consumers). In order

to make 2.1 a computationally solvable problem, we follow [72] to assume the utility

function be an increasing and twice differentiable concave function, due to two reasons:

1) The utility function of multimedia application is an increasing and concave function

of bandwidth [33] [72]; and 2) A twice differentiable function simplifies analysis of our

nonlinear optimization model [54]. The utility function used here is formulated as

U θ
c (aθc) = Rc log(1 + aθc)

where Rc represents the c’s bandwidth demand and the utility function is always

non-negative. Moreover, due to the strict concavity of the logarithmic function used

in the above utility function, the optimal bandwidth allocation strategy to convex

program 2.1 is proportionally fair [39], which means that the solution to 2.1 allocates

bandwidth based on each channel’s demand. In addition, since the above model

allocates bandwidth based on Rc for channel c, we can use Rc to determine the priority

www.manaraa.com

26

of that channel by multiplying Rc by a priority constant. For example, if channel A

has a higher priority than channel B, we multiply RA by a priority constant 1.2

and multiply RB by 0.9. Our proposed protocol DAC uses the sampling method to

determine Rc and Bθ, which is scalable and will be described in following sections. In

the next subsection, we propose a distributed algorithm for the global optimization

problem 2.1 for a large-scale system.

2.3.3.2 Algorithms for Solving Convex Problem 2.1

The distributed solution to problem 2.1 is based on the standard dual decompo-

sition [64], referred to as Dual-Algorithm in the remaining of the chapter. Before

developing the Dual-Algorithm, we first establish the Lagrangian of 2.1

L(a,λ) =
∑
e∈E

U θ
c (aθc) +

∑
θ

λθ(Bθ −
∑
c∈θ

aθc)

=
∑
e∈E

[U θ
c (aθc)− λθaθc] +

∑
θ

Bθλθ

=
∑
e∈E

Lc,θ(a
θ
c , λ

θ) +
∑
θ

Bθλθ (2.3)

where e = (Sθ, c) (we use (θ, c) to represent the edge e = (Sθ, c) hereinafter) is an edge

in the resource allocation graph indicating the bandwidth that c obtains from Sθ, λ
θ ≥

0 is the Lagrange multiplier (bandwidth price of multi-view user set Sθ) associated

with the linear capacity constraint (2.2) of Sθ, and Lc,θ(a
θ
c , λ

θ) = U θ
c (aθc) − λθaθc is

the Lagrangian associated with the edge (θ, c) to be maximized on that edge by the

consumer c.

Based on the dual decomposition, each edge e ∈ E whose starting vertex is c, for

the given λθ, solves

a?θc (λθ) = arg max
a≥0

[U θ
c (aθc)− λθaθc] ∀c (2.4)

www.manaraa.com

27

which is unique due to the strict concavity of U θ
c (·). The master dual problem which

determines the bandwidth price of Sθ, is

min
λ
g(λ) =

∑
c

gc(λ) + λTB (2.5)

subject to

λ ≥ 0 (2.6)

where gc(λ) = Lc,θ(a
?θ
c (λθ), λθ). The unique solution to 2.4 indicates that the dual

function g(λ) is differentiable and therefore there exists a gradient method that up-

dates the λθ at each iteration

λθ(t+ 1) = [λθ(t)− α(Bθ −
∑

(θ,c)∈E

a?θc (λθ(t)))]+ ∀θ (2.7)

where t is the iteration index, α > 0 is the step size, [·]+ represents the nonnegative

orthant projection.

Theorem 1. The Dual-Algorithm solves the problem 2.1 in a distributed manner.

Proof Sketch: Due to the concavity of the utility function, the duality gap for

problem 2.1 is zero. Therefore, the dual variable λ(t) converges to λ? as t→∞. The

solution to 2.4 has a unique solution and the primal variable a?θc (λ(t)) will converge

to the primal optimal variable a?. Detailed proofs for the convergence of concave

maximizations are available in [54]. Problem 2.4 can be independently solved at

the edges at each consumer (channel) and the gradient based update 2.7 can be

independently carried out at each supplier (user set).

We summarize the algorithms carried out at the consumers and suppliers at round

t in Algorithms 1 and 2.

www.manaraa.com

28

/*The consumer determines how much bandwidth should be obtained from Sθ
based on λθ. Since a?θc can be updated independently by solving problem 2.4,
the algorithm does not need synchronization mechanism to receive all λθ

simultaneously.*/
INPUT: λθ

OUTPUT: updated a?θc
On receiving update messages of λθ;
foreach θ, such that edge (θ, c) ∈ E do

update a?θc by solving the problem 2.4;
submit the updated a?θc to corresponding supplier Sθ;

end

Algorithm 1: Consumer c at round t

/*The supplier updates the λθ(t) based on each consumer’s new bandwidth
demand a?θc and λθ(t− 1). Therefore, λθ(t) can be considered as the bandwidth
price at Sθ. To simplify implementation, Sθ waits for a period T to receive
updates from each consumer. If update from a specific consumer is not
received, the old valued is used.*/
INPUT: a?θc , ∀(θ, c) ∈ E
OUTPUT: updated λθ(t)
Waiting for a period T to receive update messages of a?θc , ∀(θ, c) ∈ E;
Independently update λθ(t) with the λθ(t− 1) and the updated a?θc ;
foreach c, such that edge (θ, c) ∈ E do

Send the new λθ(t) to consumer c;
end

Algorithm 2: Supplier Sθ at round t

www.manaraa.com

29

2.3.3.3 Discussion

What if there are a large number (i.e., M) of channels and then a large number (i.e.,

2M) of suppliers? Notice that each supplier Sθ with |θ| = 1 has only one consumer,

so it does not need to run the allocation algorithm 2 and it can directly allocate all

of its bandwidth to the consumer. Furthermore, in order to achieve better scalability,

only if a supplier has a large enough number of users, does it run the bandwidth

allocation algorithm (i.e., the set of users has sufficiently large impact on the system

performance). Specifically, supplier Sθ runs allocation algorithm 2, only if Nθ/N > α,

where Nθ is the number of users in Sθ (i.e., Nθ = |Sθ|), N is the total number of users

across all channels (i.e., N =
∑

θ⊆Θ Nθ), and α is a system parameter. Note that

this implies that there are at most 1/α suppliers running the allocation algorithm.

For example, if α = 0.001, then there are at most 1/α = 1000 concurrent allocations

in the system. If supplier Sθ does not run an allocation, it directly allocates its

bandwidth to its consumers in proportion to their corresponding streaming rates

(i.e., rc for consumer c). For a system with a large number of channels, this method

can significantly reduce the total number of concurrent allocations while not greatly

affecting the system efficiency (based on our simulation, for 32 channels with 20,000

peers, it converges within several seconds). The value of α is determined by the

required accuracy of the bandwidth allocation. Smaller α provides better accuracy

due to better approximation of the bandwidth allocation in the system.

What if there is insufficient bandwidth for the system? In case of insufficient

bandwidth, the system either suffers a degraded quality of service, if all the chan-

nels are considered equally important, or provides differentiated quality of service

depending on the priorities of different channels. The proposed bandwidth allocation

program 2.1 has the potential to provide differentiated QoS, in that we can change the

order of utility functions based on the priority of each channel. Therefore, channels

www.manaraa.com

30

with higher priorities have the privileges to obtain more bandwidth to sustain their

service quality than those with lower priorities.

How to implement the concurrent allocations? We require that there will be a small

group of dedicated allocation servers in the system, each handling multiple suppliers.

The total number of allocation servers is proportional to the value of 1/α. We expect

that very few allocation servers will be necessary for a small value of 1/α, such as

1000. Nevertheless, additional allocation servers can provide better fault tolerance.

The tracker server (bootstrap server) of each channel can act as the consumer for the

channel. Since it only needs to communicate with a small group of allocation servers

for at most 1/α allocations during each allocation round, we do not expect that this

would overload the tracker server.

2.3.4 Measuring System Information Required by the Allo-

cations

In this section, we describe our design choices and implementation details on how to

measure the system information required by the bandwidth allocation.

2.3.4.1 Information to measure

To allocate its upload bandwidth, supplier Sθ must know Bθ which is the total upload

bandwidth of all users watching just the channels in θ. To determine whether to

allocate it bandwidth, supplier Sθ must know Nθ and N (i.e., whether Nθ/N > α),

where Nθ is the total number of users watching just the channels in θ and N is the

total number of users in the system. The consumer c uses formula Rc = Nc×rc×γ to

determine the bandwidth demand of channel c, which is used in the utility function,

where rc is the streaming rate of channel c and γ is a scalar for considering the

control overhead required by intra-channel streaming protocols (e.g., random block

www.manaraa.com

31

scheduling achieves near optimal performance with γ ≥ 1.1 [102]). Since rc and γ are

known for channel c, consumer c only needs to measure Nc which is the total number

of users watching channel c.

2.3.4.2 Design Choices

One straightforward method to measure the above required information is to use a

distributed information management system, such as DHT-based RandPeer [44], to

keep track of the information of all users. This method can accurately measure the

required information. However, in order to keep track of the information of dynamic

users (joining/leaving/failure), this method generates a significant amount of traffic

overhead between users and the information management system. It is not scalable

to systems with a large number of users and channels.

Instead of directly keeping track of the information of all users, DAC adopts a

sampling method that statistically measures the information of all users with a reason-

ably good accuracy and an affordable traffic overhead. Sampling methods [27, 75, 57]

have been studied recently for selecting peers uniformly at random from a P2P over-

lay. The difficulty lies in how to select peers uniformly at random in a dynamic and

heterogeneous P2P overlay, where peers may join and leave the overlay and have

different numbers of neighbors. There are two types of unbiased sampling meth-

ods: Metropolized Random Walk with Backtracking (MRWB) [75] method based on

Metropolis-Hastings method for Markov Chains, and Sample and Collide (S&C) [57]

method based on Continuous Time Random Walk. While both the MRWB method

and the S&C method can be used to uniformly sample the information of peers, the

S&C method can also be used to estimate the total number of peers in a group.

Therefore, DAC chooses the S&C method to measure the required information.

www.manaraa.com

32

2.3.4.3 Implementation Details

Considering that Bθ = Nθ × bθ where bθ is the average upload capacity of every user

in Sθ, DAC first measures Nθ and bθ, and then calculates Bθ as Nθ × bθ. Overall,

DAC needs to measure four types of information: N , Nc for any c ∈ Θ, Nθ for any

θ ⊆ Θ, and bθ for any θ ⊆ Θ.

There are a few sampling servers in the system (for fault-tolerant reasons), which

are responsible for statistically measuring all the required information, and periodi-

cally reporting them to each consumer and each supplier. Below we first explain how

the sampling server measures N , and then explain how it measures Nc, Nθ and bθ.

Every ∆t time interval, the sampling server uses the S&C method [57] to measure

N as described below.

• The sampling server randomly identifies a series of users in the system as ini-

tiators.

• Each initiator initiates a continuous-time random walk, which may cross differ-

ent channels if a visited user watches multiple channels. The random walk will

finally stop at a uniformly selected user.

• Each selected user reports its information such as its unique user ID, its upload

capacity, and its subscribed channels to the sampling server.

• The sampling server keeps identifying new initiators until it obtains the infor-

mation of n selected users such that there are exactly β pairs of equal user IDs

among these n selected users (called β collisions in [57]).

• Finally, N can be estimated by solving the following equation with the standard

bisection search.
n−β−1∑
i=0

i

N − i
− β = 0 (2.8)

www.manaraa.com

33

According to the theory of the S&C method, any user in the system can be

identified as an initiator, and it does not need to be uniformly selected. Therefore, any

standard P2P neighbor selection method can be used to identify an initiator. However,

in practice for better accuracy, we try to identify users in different channels and in

different locations. Note that, the sampling server can identify a series of initiators

back to back, so that multiple continuous-time random walks can be performed by

different initiators simultaneously. Parameter β is a system parameter determining

the accuracy of the estimation and the overhead of sampling traffic. The larger the

size of a P2P system, the bigger the value of β to maintain a certain degree of accuracy.

For example, based on our simulation results, for a P2P system with 20,000 users,

β = 50 can achieve a good estimate with less than ±10% error and a light-weight

sampling traffic.

The information Nc, Nθ, and bθ can be measured simultaneously while the sam-

pling server is measuring N . Recall that the sampling server selects n users uniformly

at random in the system, and it knows all the information of these n users. Therefore,

Nc can be estimated by the product of N times the percentage of n peers watching

channel c, Nθ can be estimated by the product of N times the percentage of n users

watching just the channels in θ, and bθ can be estimated by the average upload ca-

pacity of all users (among these n users) watching just the channels in θ. We can see

that it does not require any extra sampling traffic to measure Nc, Nθ, and bθ.

2.3.5 Distributing Allocation Results to Users

Because there are at most 1/α concurrent allocations at the suppliers, the proposed

allocations converge very quickly. Every ∆t time interval, DAC distributes only the

final allocation results (i.e., the results at the optimal point) but not the intermediate

results to users, in order to reduce the overhead of control traffic. DAC encapsulates

www.manaraa.com

34

the final results into a single packet, which is then distributed to all users in the

system by using any standard gossip-style protocol [24]. Note that the allocation

servers do not have to directly distribute the allocation results to all users; instead,

they send the results to some randomly selected peers and the selected peers spread

the results with the epidemic style update, which guarantees that all peers receive

the results in O(log(N)) (N is the total number of peers in the system) rounds with

high probability [24]. Even though this packet contains the result of each allocation,

its size is not very large since there are at most 1/α concurrent allocations. When

a user in Sθ receives the packet, it checks whether the packet contains the result of

allocation for Sθ. If so, it allocates its upload capacity among its subscribed channels

according to the received allocation result; otherwise, it allocates its upload capacity

among its subscribed channels proportional to their corresponding streaming rates

(i.e., rc for channel c). When a new user joins the system or when an existing

user changes its subscribed channels, it also allocates its upload bandwidth to its

subscribed channels proportional to their streaming rates until it receives a packet

containing the allocation results.

2.3.6 DAC Dynamics

An important feature of a real P2P system is user dynamics. A user may randomly

join or leave the system, and change its subscribed channels. To deal with user

dynamics, DAC periodically performs the divide-and-conquer strategy to divide the

system into different sets of logically disjoint P2P overlays at every ∆t time interval

as illustrated in Fig 2.6. The response time period ∆t is a system parameter, which

depends on how long DAC takes to perform the divide-and-conquer strategy, how

much control overhead DAC generates, and how dynamic the system is. DAC sets ∆t

on the order of minutes, for example 2 minutes in our simulations, for the following

www.manaraa.com

35

reasons: 1) It takes only a short time on the order of seconds for DAC to perform

the divide-and-conquer strategy, and then it introduces only a light-weight control

overhead for performing DAC once every ∆t time interval which is on the order of

minutes. 2) Recent P2P measurement studies [31, 78, 42] show that a P2P system is

relatively stable over an interval of minutes, because most users have a lifetime longer

than a minute, and at any time instant a significant percentage of users (e.g., > 70%

on average reported in [78]) even have a lifetime on the order of hours. On average,

the percentage change of a P2P system population in a minute [31, 42] is usually less

than 1%. Therefore, we believe that a ∆t on the order of minutes is fast enough for

DAC to respond to user dynamics.

DAC time

t t t

DAC DAC

Figure 2.6: DAC periodically performs the divide-and-conquer strategy every ∆t time
interval in response to user dynamics.

When a new user joins the system or when an existing user changes its subscribed

channels, it allocates its bandwidth to its subscribed channels in proportion to their

streaming rates until it receives a divide-and-conquer result from DAC. In the special

cases when a large number of users simultaneously join or leave a P2P overlay (e.g.,

at the beginning and the end of a program), DAC can detect the sharp population

change and then temporarily pause the divide-and-conquer strategy until the system

population becomes relatively stable. Therefore, even in these special cases, a system

with DAC should perform at least as good as a system without DAC.

2.4 Simulation Results

In this section, we use packet-level simulations to evaluate the performance of DAC

protocol.

www.manaraa.com

36

2.4.1 Simulation Setup

We develop a packet-level, event-driven multi-view P2P streaming simulator based on

the event-driven architecture of P2PStrmSim, which is a single-view P2P streaming

simulator originally developed by Zhang [99]. Each channel organizes a mesh over-

lay [56] and uses the pull-based data request strategy [102], where peers periodically

exchange buffermaps with each other and request missing data chunks based on the

received buffermaps. In order to evaluate the streaming quality, the buffer at each

peer is carefully simulated and two block scheduling algorithms are implemented,

which are the random block scheduling and the mincost block scheduling [100]. The

default buffer size is 20 seconds of video chunks. By default, a peer can have a max-

imum of 15 neighbors for each watched channel (e.g., suppose that a peer watches

channels A and B, it can have 15 neighbors in channel A and 15 neighbors in chan-

nel B). For end-to-end latency setup, we use a real-world latency matrix (2500 ×

2500) [4] obtained by measuring a group of DNS servers. Since the pairs of peers

are more than 2,500, we randomly select a latency value from the matrix for each

pair of peers. The average end-to-end latency is 75 ms. By default, the buffermap

exchange interval is set to 1 second and the data chunk request interval is set to 0.5

second, which are suggested by [102] by considering the streaming quality and control

overhead trade-off. For a typical simulation with 20,000 peers with 4 channels, the

running time is about 1 day on a Linux server with 8 2.2GHz CPUs and 8 GB RAM.

We also implement the S&C sampling algorithm used for the information estimation.

To evaluate the scalability of our DAC protocol, we enhance the simulator to support

up to 32 channels and 100,000 peers. Moreover, we provide interfaces to load the real

trace collected by GridMedia [99], a real implementation of push-pull mesh-based P2P

streaming system, which can support up to 224,453 concurrent users [102] (reported

in 2006).

www.manaraa.com

37

We simulate three protocols for the inter-channel competition problem in multi-

view P2P streaming: 1) Our DAC protocol based on the divide-and-conquer strategy;

2) The protocol [88] by Wu et al. (referred to as AAO) based on the all-at-once strat-

egy; 3) A reference protocol in which each user always allocates its upload capacity to

its subscribed channels in proportion to their streaming rates (referred to as ISO) so

that different channels are always isolated from one another. For all three protocols,

we construct an overlay with a mesh topology for each individual channel. Since

we are interested in the capability of DAC and AAO in supporting various block

scheduling algorithms such as simple random and optimization-based algorithms, we

simulate two blocking scheduling algorithms: random scheduling representing simple

scheduling algorithms, and min-cost scheduling [101] representing optimization-based

scheduling algorithms.

In order to evaluate our proposed DAC protocol, we have to configure three groups

of parameters, which are different from simulations in single-view systems [102]).

The three groups of parameters are: 1) the DAC protocol parameters; 2) the system

bandwidth information parameters; 3) the channel and peer information parameters.

The DAC protocol parameters include the time interval ∆t for running DAC

(default value is 2 min; the influence of ∆t is studied in Section 2.4.4.3), the system

parameter α for the maximal number of concurrent allocations (default value is 0.001),

the scalar γ for intra-channel streaming control overhead (default value is 1.1 [102]),

and the collision number β for S&C sampling (default value is 50, selected based on

our Group I simulations).

The system bandwidth information parameters include the streaming rate rc for

each channel c (default value 300Kbps) and the resource index for each channel (the

total upload bandwidth over the total required bandwidth [102] in that channel. The

resource index varies in each group of simulations and will be provided separately).

www.manaraa.com

38

Note that the resource index for each channel is calculated based on the ISO protocol,

which allocates multi-view peers’ upload bandwidth based on the streaming rate

of each subscribed channel. To achieve the desired resource index, we change the

fraction of peers with upload bandwidth of 3 Mbps, 1Mbps, 784Kbps, 300Kbps, and

200Kbps. As in [89] [102], we assume that the peer’s download bandwidth is enough

for sustaining the channel’s streaming rate. In order to calculate the bandwidth

of each channel, we implement the sampling method proposed in Section 2.3.4.3 to

estimate the bandwidth demand and supply of each channel (i.e., we estimate the

number of peers and the average upload bandwidth of each channel, with which we

can calculate the bandwidth demand and supply of that channel). In addition, similar

to [89] [102], during the simulation the peer’s upload bandwidth does not change, but

it can dynamically join/leave that channel, which influences the bandwidth demand

and supply of that channel. Please refer to Section 2.4.4.3 for discussions on peer

dynamics.

{1,3}

(b)

{2}

{1,2}

{2,3} {1,2,3}

{1} {1,3}

{3}

(a)

{1}
{3}

{1,2} {1,3}

{2}

(c)

{1,2}

{1}

{1,4}

Figure 2.7: Three types of channel structures: a) chain, b) mesh, and c) star.

The channel and peer information parameters include the number of channels M ,

the total number of peers N , the channel structure, and beta distribution parameters

y, z. Beta distribution is a general type of statistical distribution, with the probability

function P (x) = (1−x)z−1xy−1

B(y,z)
, where B(y, z) is the beta function defined as B(y, z) =

(y−1)!(z−1)!
(y+z−1)!

[9]. We simulate a multi-view P2P system with one of the following three

types of channel structures illustrated in Fig 2.7: a) a chain structure where a user

can view only the streams from either a single camera or two consecutive cameras in

www.manaraa.com

39

a row of cameras. b) a mesh structure where every user watches a random number

of channels, and c) a star structure where there is one popular channel that every

user watches. The population of each channel set is determined as follows: we first

arrange the channel sets in lexicographical order and then assign a channel set a

fraction f of the total number of peers N , which means the number of peers watching

that channel set is f ∗ N . We use the beta distribution to determine the fraction.

Fig 2.8, 2.9, 2.10 illustrate the shapes of population distributions for chain, mesh, and

star channel structures simulated in this chapter with a small number of channels as

an example. For example, as shown in Fig 2.8, we first generate the channel sets with 3

channels and a chain channel structure (i.e., channels sets {1}, {2}, {3}, {1, 2}, {2, 3})

and arrange them in lexicographical order in the x-axis. Then we generate the beta

distribution with parameters (2, 2) and assign the each channel set a value based on

the distribution. Finally, we calculate the fraction of peers watching a specific channel

set according to the rule above. Since the shape of the population distribution is

determined by beta distribution, we will give the channel structure with parameters

for the beta distribution in each group of simulations below.

{1,2} Channel

 Set

{1}

P
o

p
u

la
ti

o
n

 D
is

tr
ib

u
ti

o
n

{2} {3} {2,3}

Figure 2.8: Population distribution of chain structure with 3 channels, beta distribu-
tion with parameters (1,1).

Our simulation results fall into four categories based on different evaluation mo-

tivations for DAC. Group I: we evaluate the accuracy and the overhead of sampling

and then the impact of different sampling parameters on DAC. This group of sim-

www.manaraa.com

40

{1,3} Channel

 Set

P
o

p
u

la
ti

o
n

 D
is

tr
ib

u
ti

o
n

{1} {2} {3} {1,2} {1,2,3}{2,3}

Figure 2.9: Population distribution of mesh structure with 3 channels, beta distribu-
tion with parameters (2,2).

{1,3}

P
o

p
u

la
ti

o
n

 D
is

tr
ib

u
ti

o
n

Channel

 Set

{1,4}{1} {1,2}

Figure 2.10: Population distribution of star structure with 4 channels, beta distribu-
tion with parameters (0.8, 0.8).

ulation results is also for selecting proper sampling parameter for Group II and III.

Group II: we evaluate the flexibility of DAC compared with AAO using the two block

scheduling algorithms. Group III: we conduct the comprehensive performance evalu-

ation of DAC compared with ISO. Group IV: we evaluate the intra-channel streaming

quality of DAC with various metrics defined in [102], which aims to show that DAC

can provide good streaming quality with low control overhead for each channel.

To compare the performance of DAC with ISO and AAO, we measure the packet

delivery ratio of the system. The packet delivery ratio of a user for channel c is defined

as the ratio of the total number of packets of channel c received by the user before

the playback deadline to the total number of packets sent by the streaming server of

channel c. The packet delivery ratio of channel c is defined as the average delivery

ratio of all users watching channel c, which means that we use the worst channel’s

performance to represent the system performance. Finally, the packet delivery ratio of

www.manaraa.com

41

the system is defined as the lowest delivery ratio among all channels. Intuitively, this

is because the satisfaction of a user watching multiple channels is usually determined

by the channel with the worst quality.

2.4.2 Group I: Impact of the Sampling Method on DAC

2.4.2.1 Sampling accuracy

Fig 2.11 shows the impact of collision number β on the sampling accuracy. We simu-

late a static system with a total of 16,800 users, and with a chain channel structure

of 4 channels. We use beta function with parameters (1,1), whose shape is shown in

Fig 2.8. We can see that when β is larger than 20, the estimated number of users is

very close to the actual result. DAC sets β to 50 by default, which can achieve good

sampling accuracy for systems with up to 100,000 users based on our simulation re-

sults. Fig 2.12 shows the estimated number of users in a very dynamic system where

the total number of users first increases quickly from 10,000 to 60,000, and then drops

to 20,000. Even in this case, the sampling method still achieves good accuracy.

 10000

 12000

 14000

 16000

 18000

 20000

 20 40 60 80 100 120

N
u

m
b

e
r

o
f

U
s
e

rs

Number of Required Collisions

Sampling Result
Actual Value

Figure 2.11: Impact of collision number β on sampling accuracy in a static system.

2.4.2.2 Sampling overhead

We use this group of simulations to evaluate the control overhead of the S&C sampling

method. The accurate system information can always be obtained by requiring peers

www.manaraa.com

42

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

U
s
e

rs
Simulation Time (Minutes)

Sampling Result
Actual Value

Figure 2.12: Sampling a dynamic system.

to report their information with O(N) messages (N is the number of peers in the

system). Therefore, we define the sampling overhead as the number of messages,

MSG, used in sampling divided by the total number of peers, N . We simulate both

static and dynamic cases, where the sampling parameter β is 50. For the static

case, there are 200,000 peers and 32 channels. For the dynamic case, peers arrive at

the system at the rate of 10 peers per second and the sojourn time of each peer is

determined by the real trace (please refer to Section 2.4.4.4). Fig 2.13 shows that the

sampling overhead for static case is about 4% and is about 10% for dynamic case,

which indicates that our sampling method can achieve good estimation accuracy with

affordable overhead. The theoretical overhead bound of S&C is O(
√
N) [57].

 0

 5

 10

 15

 20

 25

 6 12 18 24 30 36 42

S
a

m
p

lin
g

 O
v
e

rh
e

a
d

 (
%

)

Sampling Rounds

Dynamic
Static

Figure 2.13: Sampling overhead of a static system with 200,000 peers and a dynamic
system with user arrival rate 10 users/second.

www.manaraa.com

43

2.4.2.3 Impact on DAC

To study the impact of the sampling method on the performance of DAC, we simulate

two protocols: DAC and Oracle (as a reference protocol). Note that the major

difference between DAC and Oracle is that Oracle uses the exact information collected

by a centralized monitoring server; while DAC uses the estimated information based

on sampling. The channel structure and the beta distribution is same as the above

simulations. Oracle is very similar to DAC, except that it has the accurate information

of the system and thus does not use the sampling method as DAC. We simulate the

same system as the one simulated for Fig 2.11, where the total bandwidth of the

system is enough to support all channels, but different channels have different resource

indices (See previous page) with ISO. This is likely to happen in a P2P system with

multiple channels as shown by a recent measurement study of PPLive [31]. The

resource index with ISO for four channels are: 0.9, 1.3, 1.0 and 1.3. Fig 2.14 shows

the bandwidth satisfaction ratio (the total allocated bandwidth over the total required

bandwidth) of each channel with DAC and Oracle. We can see that when β is large

enough (in this case 20), DAC with the estimated information achieves very similar

results as Oracle.

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120B
a

n
d

w
id

th
 S

a
ti
s
fa

c
ti
o

n
 R

a
ti
o

Number of Required Collisons

Oracle - Ch A
Oracle - Ch B
Oracle - Ch C
Oracle - Ch D

DAC - Ch A
DAC - Ch B
DAC - Ch C
DAC - Ch D

Figure 2.14: For large enough β, the performance of DAC is insensitive to the value
of β.

www.manaraa.com

44

2.4.3 Group II: Flexibility Evaluation DAC vs. AAO

We use two representative block scheduling algorithms as intra-channel streaming

protocols and compare DAC with AAO. We vary three parameters to show that

the performances of the two block scheduling algorithms depend on the flexibility of

DAC and AAO. The three parameters are: the average resource index, the maximum

number of neighbors and the streaming rate. By default, we simulate 2000 peers and

4 channels with a mesh structure (the parameters for beta distribution is (2,2), whose

shape is shown in Fig 3.9). The resource indices with ISO for 4 channels are: 0.9,

1.3, 1.0 and 1.3. The default streaming rate is 300 Kbps. The simulation time for all

simulations is 1000 seconds.

 0.2

 0.4

 0.6

 0.8

 1

 1 1.1 1.2 1.3 1.4 1.5

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Resource Index

AAO+random
AAO+mincost
DAC+random
DAC+mincost

Figure 2.15: DAC provides good streaming quality for various resource indices; AAO
requires more bandwidth to achieve similar performance.

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Number of Neighbors

AAO+random
AAO+mincost
DAC+random
DAC+mincost

Figure 2.16: AAO streaming quality decreases as the number of neighbors increases
due to inefficient bandwidth utilization; DAC always achieves good performance.

From Figs 2.15, 2.16, 2.17, we note that DAC always provides near optimal per-

www.manaraa.com

45

 0.2

 0.4

 0.6

 0.8

 1

 300 400 500 600 700 800 900 1000

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Streaming Rate (Kbps)

AAO+random
AAO+mincost
DAC+random
DAC+mincost

Figure 2.17: AAO’s streaming quality fluctuates with different video streaming rates;
DAC always achieves good performance.

formance with both streaming protocols. Compared with DAC, AAO suffers bad

performance, due to its inflexible design. Fig 2.15 shows that AAO needs more band-

width to provide good performance for both streaming protocols. Fig 2.16 shows that

the performance of AAO decreases as the number of neighbor increasing. The reason

is that AAO requires network coding to control the utilization of allocated bandwidth.

Without network coding, the allocated bandwidth to each neighbor is poorly utilized,

when the number of neighbors is large. Fig 2.17 shows that even with sufficient band-

width (average index is 1.15), AAO’s performance fluctuates with different streaming

rates. From the comparison of AAO and DAC with the two intra-channel streaming

protocols, we can conclude AAO is not as flexible as DAC.

2.4.4 Group III: Performance Evaluation of DAC vs. ISO

2.4.4.1 Systems with a large number of users

We simulate a system with a chain channel structure of 4 channels (parameters of

beta distribution are (1,1)). Specifically, the resource index with ISO is 1.2, 1.0, 1.0,

and 0.9 for channels A, B, C, and D, respectively. Fig 2.18 shows the packet delivery

ratio of the system for DAC and ISO as the total number of users increases from

5000 to 20,000. Since the resource index of channel D with ISO is only 0.9, ISO

www.manaraa.com

46

achieves a poor packet delivery ratio. We can see that DAC outperforms ISO across

a wide range of system sizes, due to efficiently allocating bandwidth among different

channels. Fig 2.19 shows the results with similar simulation setting, except that the

system has a mesh channel structure (parameters for beta distribution are (2,2)). We

can see that DAC outperforms ISO for a mesh channel structure.

 0.6

 0.7

 0.8

 0.9

 1

 5000 10000 15000 20000

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Number of Users

ISO
DAC

Figure 2.18: DAC outperforms ISO in systems with a chain channel structure when
the number of peers increases from an intermediate scale to a large scale.

 0.6

 0.7

 0.8

 0.9

 1

 5000 10000 15000 20000

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Number of Users

ISO
DAC

Figure 2.19: DAC outperforms ISO in systems with a mesh channel structure when
the number of peers increases from an intermediate scale to a large scale.

2.4.4.2 Systems with a large number of channels

We simulate a system with a star channel structure (parameters of beta distribution

are (0.8,0.8)). The number of channels varies from 2 to 32. The total bandwidth of

the system is enough to support all channels, but different channels have different

resource indices with ISO. Specifically, the resource index with ISO is 1.2 for half

www.manaraa.com

47

of the channels and 0.9 for the other half of channels. The total number of users is

10,000. Again, from Fig. 2.20, we can see that DAC outperforms ISO in a wide range

of channel numbers, due to efficiently allocating bandwidth among different channels.

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Number of Channels

ISO
DAC

Figure 2.20: DAC outperforms ISO in systems with a star channel structure when
the number of channels increases from small to large.

2.4.4.3 Systems with a dynamic number of users

We simulate a dynamic system with a mesh channel structure of 4 channels (parame-

ters of beta distribution are (2,2)). For each channel set, the average user arrival rate

is 3 users per second, and the average life time of a user is 15 minutes. The average

number of users is 20,000. The total bandwidth of the system on average is enough

to support all channels, and the resource index with ISO on average is 1.2, 1.0, 1.0,

and 0.9 for channels A, B, C, and D, respectively. Fig 2.21 shows the packet delivery

ratio of each channel for DAC and ISO. ISO achieves a good packet delivery ratio

for channels A, B, and C, but not for channel D because channel D has insufficient

bandwidth with ISO. We can see that DAC achieves a good packet delivery ratio for

every channel.

Since peer dynamics are important features of P2P streaming systems, we use

the following simulations to evaluate the performance of our DAC protocol. First,

we increase the peers’ arrival rate from 3 users per second to 6 users per second and

then reduce the average life time of users to 8 minutes. We also change the time

www.manaraa.com

48

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

A B C D

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Channels

ISO
DAC

Figure 2.21: DAC outperforms ISO in dynamic systems for a large scale network.

interval ∆t from 2 minutes to 4 minutes to show the impact of ∆t. We only show

the simulation results of channel D, since it is the channel that suffers the bandwidth

deficit. Fig 2.22 shows the number of online peers watching channel D against the

simulation time. From Fig 2.23, we can see that DAC can achieve a very good

performance even in a very high dynamic situation. Fig 2.23 shows that from the

beginning of the simulation to about 250 seconds, the average delivery ratio is not

optimal, in that during every ∆t = 2 minutes, there are about 720 peers joining the

network (more than 20% population increase and DAC protocol should be paused).

After 250 seconds, almost all peers have joined the network and the average life time

is 8 minutes and therefore the average delivery ratio is close to 1. As we expected,

increasing ∆t might result in worse performance, as long as DAC cannot accurately

estimate the system information required for bandwidth allocation. As previously

mentioned (see Section 2.3.6), in this situation, DAC should be paused.

2.4.4.4 Trace-driven evaluation

We also evaluate our DAC protocol with a real trace collected from GridMedia, which

provides the user’s online life times. The trace was collected when GridMedia system

helped CCTV to broadcast Spring Festival (Chinese New Year) Gala Show of Channel

CCTV1 in 2006 through the global Internet, which served more than 1,800,000 users

www.manaraa.com

49

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000

P
o

p
u

la
ti
o

n

Simulation Time

Online Peers

Figure 2.22: Number of peers watching channel D with arrival rate 6 user/second and
average life time 8 minutes.

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Simulation Time (Seconds)

Channel D + DAC 2 minutes
Channel D + DAC 4 minnutes

Figure 2.23: The average packet delivery ratio of channel D (calculated every 10
seconds), DAC execution interval is 2 minutes VS 4 minutes.

www.manaraa.com

50

from tens of countries all over the world [102]. The CDF of user’s online times is

shown in Fig 2.24. Since the trace did not provide the user’s arrival pattern, we still

use the average arrival rate 6 users per second in this simulation. In addition, we

simulate the same scenario as [102], where users join the system during the whole

simulation.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

C
D

F

Online Time (Seconds)

Population Fraction

Figure 2.24: The CDF of users’ life time from real trace.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 200 400 600 800 1000

P
o

p
u

la
ti
o

n

Simulation Time

Online Peers

Figure 2.25: Number of peers watching channel D with arrival rate 6 user/second and
average life time retrieved from the real trace.

Fig 2.25 shows the number of online peers watching channel D against the sim-

ulation time. From Fig 2.26, we can see that even the worst channel can achieve

good a streaming quality with our DAC strategy, which is comparable to the simula-

tion results in [102]. Moreover, Fig 2.26 shows that our DAC strategy improves the

streaming quality up to 20%, compared with ISO.

www.manaraa.com

51

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Simulation Time (Seconds)

Channel D + DAC
Channel D + ISO

Figure 2.26: The average packet delivery ratio of channel D (calculated every 10
seconds).

2.4.4.5 Systems with insufficient bandwidth

We simulate a system with a chain channel structure of 4 channels (parameters of

beta distribution are (1,1)). The total number of users is 20,000. But the total

bandwidth of the system is insufficient to support all channels. In this case, different

channels are assigned different priorities by changing Rc in the utility function (e.g.,

RA is larger than RC , which means that channel A has higher priority than channel

C). Specifically, channels A and B are assigned the highest priority. Channel C has

lower priority than A and B. Channel D is assigned the lowest priority. Fig 2.27

shows the packet delivery ratio of each channel measured every 10 seconds. We can

see that channels A and B achieve the highest delivery ratio and channel D achieves

the lowest delivery ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 420 440 460 480 500 520 540 560 580 600 620 640

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Simulation Time (Seconds)

Channel A
Channel B
Channel C
Channel D

Figure 2.27: DAC provides a better packet delivery ratio to a channel with a high
priority, when the total upload bandwidth is insufficient.

www.manaraa.com

52

2.4.5 Group IV: Intra-channel streaming quality evaluation

for DAC

In previous groups of simulations, we use the delivery ratio as the key metric to evalu-

ate the performance of DAC. In this section, we evaluate the intra-channel streaming

quality of DAC with metrics that are used in single-view system design [102]. 1)

Packet arrival delay: it is the time elapsed between the packet sent by the source and

finally received by the receiver after one or more hops; 2) Control packet rate: packets

per second of control messages, which include management messages, buffermap ex-

change messages, and neighbor selection messages, etc.; and 3) 0.99-playback delay:

0.99 playback delay is defined as the minimum time interval between the instant that

the peer starts to request the video and the instant that its delivery ratio reaches

0.99. It is used to capture the delay experienced by end users. Usually, peers buffer

the video chunks for better streaming quality, but they have to wait for some time

before playing the video, which will greatly influence user’s watching experience and

shorter delays imply better experiences. We simulate the single-view protocol pro-

posed in [102] as a reference (REF for short), since we use it as the intra-channel

streaming protocol for DAC.

 10

 15

 20

 25

 100 600 1100 1600

A
v
e

ra
g

e
 P

a
c
k
e

t
D

e
la

y
 (

S
)

Simulation Time (S)

DAC
REF

Figure 2.28: The average packet arrival delay of the 1,800 seconds simulations (cal-
culated every 10 seconds).

We simulate a system with a chain channel structure of 4 channels and sufficient

www.manaraa.com

53

 10

 15

 20

 25

 30

 35

 40

 1000 1200 1400 1600 1800A
v
g

 C
tr

l
P

a
c
k
 R

a
te

 (
P

a
c
k
/S

)
Simulation Time (S)

REF Pack Rate
DAC Pack Rate

Figure 2.29: The average control packet rate of the 1,800 seconds simulations (calcu-
lated every 10 seconds).

bandwidth (parameters of beta distribution are (1,1)). The total number of users is

20,000. The peer joining/leaving is driven by the trace used in Section 2.4.4.4. We

use the random data block scheduling algorithm. Fig. 2.28 shows the average packet

arrival delay of all online peers during 1,800 seconds, which is similar to the REF

result. From Fig. 2.29, we can see that the average control packet rate increases from

about 21 packets/second to 35 packets/second, since the number of peers increases

as shown in Fig 2.25. Moreover, compared with the REF result, the average control

packet rate is only slightly higher, which provides reassurance that our sampling

method does not introduce a large overhead. Fig. 2.30 shows that most of peers have

a 25-second 0.99 playback delay in the worst channel, which is acceptable with pure

pull-based method [100].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ra

c
ti
o

n

0.99-playback delay (S)

DAC
REF

Figure 2.30: CDF of 0.99 playback delay of peers in the worst channel.

www.manaraa.com

54

2.5 Chapter Summary

In this chapter, we propose a flexible, efficient and scalable protocol called DAC for

multi-view P2P streaming systems using a divide-and-conquer strategy. To achieve

flexibility and scalability, DAC solves the inter-channel competition problem at the

channel level, compared with existing work AAO, which solves the problem at the

peer level. Moreover, DAC integrates with the statistical sampling module to mea-

sure the system information used by DAC, and achieves reasonably good accuracy

with affordable overheads. To meet the efficiency goal, DAC allocates the upload

bandwidth to different channels according to their demands via our proposed utility

based optimal resource allocation model. Our extensive packet level simulations show

that DAC achieves its design goals.

www.manaraa.com

55

Chapter 3

Exploring The Design Space Of

Multi-Channel Peer-to-Peer

Streaming Systems

3.1 Three Designs For Multi-Channel P2P Stream-

ing System

Peer-to-peer (P2P) video streaming systems, including both live streaming and Video-

On-Demand (VOD) applications, have been hugely successful in providing multimedia

streaming services with hundreds of channels (e.g., UUSee claims to provide about

10,000 channels [77]). Other similar large-scale industry deployments including PP-

Stream [67], CoolStreaming [104] and PPLive [66], support hundreds of channels with

tens of thousands of concurrent users1 [32]. All of these systems are referred to as

multi-channel P2P video streaming systems.

Current measurement studies [32] [33] show that the resource distribution such

1We use the term user and peer inter-changeably in this chapter.

www.manaraa.com

56

as upload bandwidth is unbalanced among different channels, which implies that

some channels have satisfactory streaming qualities with surplus resources, while

others suffer poor streaming qualities due to resource deficit. Allowing the channels

with surplus bandwidth help those with deficit bandwidth is the common intuition

behind several potential designs, since the upload bandwidth is the most precious

resource that greatly influences the streaming qualities of all channels [102] [40].

In this chapter, cross-channel cooperation means sharing upload bandwidth among

different channels.

In a multi-channel system with cross-channel cooperation, a user may subscribe

to a variable number of channels2, and simultaneously watch either all or some of the

subscribed channels. It is realistic for a user to simultaneously watch multiple chan-

nels, since commercial P2P streaming systems allow their users to watch programs

in customized manners (e.g., watching two channels using Picture-In-Picture). Note

that, a user may not watch all of its subscribed channels. For example, Wu et al. [92]

propose a View-Upload-Decoupling (VUD) approach for building multi-channel P2P

streaming systems that requires a user to subscribe to other channels as a helper to

alleviate the impact of channel switching, even though the user does not watch these

subscribed channels.

There are three potential designs for multi-channel systems that allow users to

watch/subscribe to a variable number of channels.

• Naive Bandwidth allocation Approach (NBA), where a user subscribes to only

its watched channels, and allocates its upload bandwidth to its watched chan-

nels proportional to the channel streaming rates (e.g., if all channels have the

same streaming rate, the user allocates its bandwidth equally to all watched

2Subscribing to a channel means that a peer participates in video dissemination for that channel,
but may not watch that channel. If the peer does not watch that channel, it serves as a helper [92]
for that channel.

www.manaraa.com

57

channels.). Most of the current multi-channel systems use NBA due to its sim-

plicity.

• Passive Channel-aware bandwidth allocation Approach (PCA), where a user

subscribes to only its watched channels, and optimally allocates its bandwidth

to its watched channels. The bandwidth allocation algorithm [88] for overlapped

overlays and the protocol proposed in [81] are examples of PCA design.

• Active Channel-aware bandwidth allocation Approach (ACA), where a user sub-

scribes to not only its watched channels, but also maybe to some other channels

as a helper. A user optimally allocates its bandwidth to the watched channels

and the subscribed but unwatched channels. Note that the main difference be-

tween PCA and ACA is that ACA requires a user to subscribe to some channels

that it does not watch and to allocate its bandwidth to the unwatched channels.

View-Upload-Decoupling (VUD) proposed in [92] is a special case of ACA de-

sign, since a peer is restricted to watch only one channel and might be selected

by the system to join other channels as a helper.

Intuitively, ACA should perform better than PCA, since ACA can use all of its

surplus bandwidth efficiently in a system. PCA should perform better than NBA,

since PCA is aware of the bandwidth imbalance in a system. However, their im-

plementation complexity also increases in the order of NBA, PCA, and ACA (refer

to Section 3.3.4 for detailed implementation complexity discussions). Consequently,

when designing multi-channel systems, we must decide which design should be used

by considering the performance and complexity.

However, all the existing works focus on proposing and evaluating specific pro-

tocols instead of studying the intrinsic features of designing multi-channel systems.

The goal of this chapter is to generalize and analyze the designs of multi-channel sys-

www.manaraa.com

58

tems, and thus shed insights into choosing the proper design, in term of complexity

and effectiveness. Specifically, we answer the following two questions: 1) what are

the general characteristics of existing and potential designs? 2) under what circum-

stances, which design should be used to achieve the desired streaming quality with

the lowest complexity?

The contributions of this chapter are as follows: 1) we identify three designs,

namely NBA, PCA and ACA, for building multi-channel P2P streaming systems and

develop simple models based on linear programming and network flow graphs for the

three designs, which capture their main characteristics; 2) with established models,

we further prove that finding optimal ACA design with overhead is NP-Complete

and provide qualitative discussion of relative implementation complexities; 3) we

derive closed-form results for a two-channel system; our results show that for this

special case there is no need to use ACA design, and the NBA design can either only

provide low quality streaming or consumes higher bandwidth to provide the same level

of streaming quality as PCA; the channel structure (refer to the last paragraph of

Section 3.4 and Section 3.5.2) greatly influences the performance; and 4) we conduct

extensive numerical simulations to compare the three designs in general cases. Our

results show that for general multi-channel P2P streaming systems, PCA can achieve

the same performance as ACA, while for special applications, ACA is required.

The rest of this chapter is organized as follows. Section 3.2 briefly summarizes

the related work. Section 3.3 describes our simple models based on network flow

graphs and insights on the three designs. Section 3.4 discusses the homogenous two-

channel systems. Section 3.5 describes the simulation settings and results. Finally,

we conclude this chapter in Section 3.6.

www.manaraa.com

59

3.2 Comparison With Existing Work

Most of the literature about P2P streaming systems focuses on improving the per-

formance within a single channel (referred to as the single-channel P2P streaming

systems). Tree-based overlay derived from IP multicast (e.g., Zigzag [76], [17]) is first

used to build single-channel systems. However, the tree structure is not resilient to

dynamics (e.g., peer joining/leaving the system randomly). Therefore, mesh-based

overlays are widely used in commercial systems such as PPLive [66] and UUSee [77].

CoolStreaming [104] first introduces the data-driven design to P2P streaming systems,

which has been proven to be powerful in real implementations. Generally speaking, all

these designs aim to efficiently utilize peers’ upload bandwidth for building scalable

and robust single-channel P2P streaming systems.

Recently, P2P streaming systems where a user subscribes to more than one channel

have emerged. Wu et al. [88] first investigate the case when a peer joins multiple

overlays in a P2P live streaming system and propose an auction-based bandwidth

allocation algorithm to improve the streaming quality for all channels. In our previous

work [81], we propose a flexible protocol for multi-view P2P live streaming systems,

based on the divide-and-conquer strategy, which solves the inter-channel competition

and intra-channel streaming separately.

In terms of multi-channel systems, there are two closely related papers. In [91]

the authors study the problem of provisioning the server bandwidth consumption in

multi-channel systems. Wu et al. [92] propose the view-upload-decoupling approach to

minimize the influence of channel churn among multiple channels. Moreover, in [93],

the same authors establish queueing network models to analytically study the per-

formance of multi-channel systems by considering channel churn, peer churn and

bandwidth heterogeneity etc. Their analytical model differs from ours, due to follow-

ing reasons. 1) They focus on the multi-channel system with the restriction that a

www.manaraa.com

60

peer can watch exactly one channel, which is a special case of the ACA; we study

more general cases. 2) they analyze the dynamic features for multi-channel systems,

in which a specific approach is used. We focus on fundamental problems of whether

a complex design should be used and which design is better.

In terms of theoretical analysis of P2P streaming, there are some studies on single-

channel streaming systems, where there is exactly one channel in the system. Kumar

et al. [40] study the performance limitations of a single-channel streaming system

with a stochastic fluid model. Liu et al. [49] derive the performance bound of single-

channel systems in terms of server load, streaming rate and tree depth. Massoulie et

al. [58] develop a network flow based model to study the decentralized broadcasting

problems and propose an optimal broadcasting algorithm. In [47], Liu et al. study the

flash crowd problem in P2P live streaming systems. [105] and [13] focus on the chunk

scheduling problem and propose optimal algorithms. They assume that the total

upload bandwidth supply of all channels are sufficient to satisfy the total bandwidth

demand to guarantee the algorithm convergence and the algorithm is evaluated with

a small number of channels and channel combinations.

In our previous works [86] [83], we propose the framework for comparing multi-

channel P2P streaming systems with linear programming models. In this chapter,

we first extend the framework with detailed discussions and proofs and apply the

framework for analyzing the three designs as well. Moreover, we discuss the model of

ACA design with overhead and use extensive numerical simulations to compare the

three designs in general scenarios.

www.manaraa.com

61

3.3 Linear Programming Models, Network Flow

Graphs and Insights For Multi-Channel P2P

Streaming Designs

In Section 3.3.1, we introduce the linear programming models for the three designs

with feasibility definitions. Section 3.3.2 uses network-flow graphs to shed insights

of the three designs. Then, in Section 3.3.3, we prove that the model for ACA

design with overhead is NP-Complete. Finally, we end this section with discussions

of implementation complexities of the three designs in Section 3.3.4.

3.3.1 Linear programming models for the three designs

An important feature of a P2P system is user dynamics; that is, a user may randomly

join or leave the system (referred to as peer churn), and change its watched channels

(referred to as channel churn). In response to user dynamics, we divide the time axis

into a series of short time intervals, and assume that during each interval the system

is relatively stable.

The system with peers and their watched channels in each interval is defined as

the system configuration for that time interval. Our models study various system

configurations that occur in an interval.

Studying the system configurations in an interval is reasonable due to the following

reasons. Recent P2P measurement studies [32, 42, 78] show that a P2P system is

relatively stable over an interval of minutes, because most users have a lifetime longer

than a minute, and at any time instant a significant percentage of users (e.g., > 70%

on average reported in [78]) even have a lifetime on the order of hours. Moreover,

we can use the queueing network models [93] to extend our model to capture peer

www.manaraa.com

62

dynamics.

We model the upload bandwidth allocation problem for NBA, PCA and ACA

with respect to a given system configuration, since the cross-channel upload band-

width sharing is the key issue in designing multi-channel P2P streaming systems.

Furthermore, we are interested in comparing the three designs with the same design

goal of maximizing the bandwidth obtained by each channel, which is the direct or in-

direct design goal in most scenarios. It does not make any sense to compare designs

with different design goals (e.g., the designs with different user utilities). Therefore,

we define the bandwidth satisfaction ratio of a channel as the total obtained upload

bandwidth of that channel over the the channel’s total bandwidth demand (a formal

definition will be introduced below). The goal of all the three designs is to maxi-

mize the aggregated bandwidth satisfaction ratio of all channels, in that the upload

bandwidth influences the performance of a P2P streaming system [102] [40] [93].

We introduce the common notation used in Section 3.3.1 and Section 3.3.2 as

follows.

• Let Θ be the set of all channels.

• Let θ ⊆ Θ be a subset of channels.

• Let Sθ be the group of peers watching just channel set θ. That is, Sθ =

{m|θ(m) = θ}. Note that Sθ1 ∩ Sθ2 = ∅ for θ1 6= θ2. θ(m) denotes the channel

set watched by peer m.

• Let um be the upload bandwidth of peer m.

• Let rc be the streaming rate of channel c ∈ Θ.

• Let xθc denote the fraction of upload bandwidth that group Sθ allocates to

channel c ∈ θ.

www.manaraa.com

63

• Let yθc denote the fraction of upload bandwidth that group Sθ allocates to

channel c not in θ. Note that
∑

c∈θ x
θ
c +

∑
c/∈θ y

θ
c = 1. Also note that for NBA

and PCA, yθc is always 0.

• Let γc denote the bandwidth satisfaction ratio of channel c, where γc is nonneg-

ative and will be given for each design below.

• Let sc be the upload bandwidth of the streaming server for channel c.

• Let Uθ be the total upload bandwidth supply of user set Sθ.

• Let Dc be the total upload bandwidth demand of channel c.

• Let N be the total number of peers.

• Let Pθ be the fraction of peers watching channel set θ.

3.3.1.1 Model for NBA

A peer in NBA may watch one or multiple channels, and it subscribes to only its

watched channels. It allocates its upload bandwidth among its watched channels

proportional to their streaming rates. Therefore, a peer m watching channel set θ,

allocates its upload bandwidth um to channel c ∈ θ with the fraction rc∑
∀c′∈θ rc′

. That

is xθc = rc × (
∑
∀c′∈θ rc′)

−1

For each channel c ∈ Θ, the total upload bandwidth demand is

Dc =
∑
∀θ:c∈θ

|Sθ|rc (3.1)

The total upload bandwidth supply is

Sc =
∑
∀θ:c∈θ

xθc(
∑
∀m∈Sθ

um) + sc (3.2)

www.manaraa.com

64

The bandwidth satisfaction ratio γc for channel c is

γc =
Dc

Sc
(3.3)

.

Definition 1 Given a system configuration, the multi-channel P2P streaming system

is defined as NBA feasible if ∀c ∈ Θ, γc ≥ 1 holds.

3.3.1.2 Model for PCA

A peer in PCA may watch one or multiple channels, and it subscribes to only its

watched channels. PCA is aware of bandwidth imbalance among different channels.

Therefore, it optimally allocates the upload bandwidth of a peer in order to maximize

the overall system streaming quality. That is, the goal of PCA is to find the optimal

xθc for the following optimization problem.

max
∑
∀c∈Θ

γc (3.4)

subject to

∑
∀θ:c∈θ

|Sθ|rc ≤
∑
∀θ:c∈θ

xθc(
∑
∀m∈Sθ

um) + sc,∀c ∈ Θ (3.5)∑
∀c∈θ

xθc = 1,∀θ ⊆ Θ (3.6)

xθc ≥ 0,∀c ∈ Θ, θ ⊆ Θ (3.7)

where γc = (
∑
∀θ:c∈θ x

θ
c(
∑
∀m∈Sθ um) + sc)× (

∑
∀θ:c∈θ |Sθ|rc)−1.

Definition 2 Given a system configuration, the multi-channel P2P streaming system

is defined as PCA feasible if the constraints (3.5) - (3.7) are satisfied simultaneously.

www.manaraa.com

65

3.3.1.3 Model for ACA

A peer in ACA may watch one or multiple channels. In addition to subscribing to

the watched channels, a peer may also subscribe to one or multiple other unwatched

channels, with the aim of contributing its surplus upload bandwidth to the channels

with deficient upload bandwidth.

Note that, in order to forward packets of an unwatched channel, a peer must

first download these packets, which in turn consumes the upload bandwidth of that

channel. That is, while a peer contributes its bandwidth to an unwatched channel,

it at the same time also consumes the bandwidth of the unwatched channel (called

overhead). Therefore, an efficient ACA protocol should minimize its overhead. For

example, the View-Upload-Decoupling (VUD) protocol proposed in [92] divides the

video stream of a specific channel into multiple substreams (e.g. one substream

contains packets with even sequence numbers and the other contains packets with odd

sequence numbers), which greatly reduces the overhead due to partial downloading

of the video stream. In this subsection, we assume that the overhead is zero in order

to simplify the analysis. This implies that we consider the best performance of ACA.

We will discuss the ACA with overhead in Section 3.3.3.

The goal of ACA is to find the optimal xθc and yθc for any c and θ for solving the

following optimization problem.

max
∑
∀c∈Θ

γc (3.8)

subject to

www.manaraa.com

66∑
∀θ:c∈θ

|Sθ|rc ≤
∑
∀θ:c∈θ

xθc(
∑
∀m∈Sθ

um) (3.9)

+
∑
∀θ:c/∈θ

yθc (
∑
∀m∈Sθ

um)

+ sc,∀c ∈ Θ∑
∀c:c∈θ

xθc +
∑
∀c:c/∈θ

yθc = 1,∀θ ⊆ Θ (3.10)

xθc , y
θ
c ≥ 0,∀c ∈ Θ, θ ⊆ Θ (3.11)

where γc =

∑
∀θ:c∈θ x

θ
c(
∑
∀m∈Sθ um) +

∑
∀θ:c/∈θ y

θ
c (
∑
∀m∈Sθ um) + sc∑

∀θ:c∈θ |Sθ|rc
. (3.12)

Definition 3 Given a system configuration, the multi-channel P2P streaming system

is defined as ACA feasible if the constraints (3.9) - (3.11) are satisfied simultaneously.

In addition to the above three feasibility conditions, we also consider the following

general feasibility condition.

Definition 4 Given a system configuration, the system-wide feasibility for NBA, PCA

and ACA is defined such that the following inequality holds

∑
∀c:c∈Θ

∑
∀θ:c∈θ

|Sθ|rc ≤
∑
∀m∈M

um +
∑
∀c:c∈Θ

sc (3.13)

.

The system-wide feasibility condition is the necessary condition for all channels to

stream the video at the source rate. Otherwise, none of the NBA feasibility condition,

PCA feasibility condition or ACA feasibility condition can be achieved for the system.

Note that the group of constraints (3.9) - (3.11) is equivalent to constraint (3.13),

and thus we have the following theorem.

www.manaraa.com

67

Theorem 2. A system configuration is ACA feasible if and only if it is system-wide

feasible.

Proof: (⇒): According to Definition 3, if a system configuration is ACA feasible, then

constraint (3.9) holds, which implies that for each channel c, the total bandwidth de-

mand of that channel is less than or equal to the total bandwidth supply of channel

c. Then, we do summation over all channels. Therefore, the left-hand side of (3.9)

is
∑
∀c:c∈Θ

∑
∀θ:c∈θ |Sθ|rc and the right-hand side is

∑
∀c:c∈Θ(

∑
∀θ:c∈θ x

θ
c(
∑
∀m∈Sθ um) +∑

∀θ:c/∈θ y
θ
c (
∑
∀m∈Sθ um)) +

∑
∀c:c∈Θ sc. By equation (3.10),

∑
∀c:c∈Θ(

∑
∀θ:c∈θ x

θ
c(
∑
∀m∈Sθ um)+∑

∀θ:c/∈θ y
θ
c (
∑
∀m∈Sθ um)) =

∑
∀m∈M um, which implies that inequality (3.13) holds.

(⇐): ∀m ∈M watching a channel set θ, the peer can allocate xθc of its bandwidth to

a channel c, ∀c : c ∈ θ and it can also allocate yθc of its bandwidth to a channel c, ∀c :

c /∈ θ. Furthermore, the relationship of xθc and yθc satisfies
∑
∀c:c∈θ x

θ
c +
∑
∀c:c/∈θ y

θ
c = 1.

Therefore, the first term of the right-hand side of inequality (3.13) is

∑
∀m∈M

um(
∑
∀c:c∈θ

xθc +
∑
∀c:c/∈θ

yθc). (3.14)

Rearranging term (3.14) based on each channel c, we get the new form of the first

term of (3.13)

∑
∀c:c∈Θ

(
∑
∀θ:c∈θ

xθc(
∑
∀m∈Sθ

um) +
∑
∀θ:c/∈θ

yθc (
∑
∀m∈Sθ

um)) (3.15)

Based on inequality (3.13) and (3.15), constraint (3.9) is satisfied by all chan-

nels in the system. Therefore, we can conclude that system-wide feasible condition

guarantees the ACA feasible.

We use the objective functions of maximizing the aggregated bandwidth satisfac-

tion ratios to establish simple linear programming (LP) models for comparing the

www.manaraa.com

68

three designs. These objective functions might not guarantee fair bandwidth alloca-

tion among different channels. However, the optimality of our LP models guarantees

that there is at least one feasible solution for a specific design and fair allocations can

be achieved by other non-linear objective functions. Therefore, our LP formulation

serves well for establishing tractable models and comparing feasibilities of the three

designs.

3.3.2 Network-flow graphs for the three designs

For better understanding of the three designs, we use generalized network flow graphs

to represent the bandwidth allocation problems corresponding to the three designs.

The network flow graphs can be constructed from the resource allocation graphs

described below.

A B

S S S
A AB B

Figure 3.1: A resource allocation graph for a multi-channel P2P streaming system
with two channels A and B.

We first consider the resource allocation graph and network flow graph for PCA.

For each user set Sθ, PCA considers how to allocate the total upload bandwidth of

all users watching just channel set θ to all channels c ∈ θ. Intuitively, a user set Sθ

provides its upload bandwidth to a set of channels and a channel c requests upload

bandwidth from some user sets, therefore, we call a user set a bandwidth supplier and

a channel a bandwidth consumer. The relationship between suppliers and consumers

can be described by a bipartite resource allocation graph G = (S,D,E), where vertex

set S is the set of all suppliers (i.e., S contains Sθ for any θ ⊆ Θ), vertex set D is the

www.manaraa.com

69

set of all consumers (i.e., D contains c for any c ∈ Θ), and edge set E represents the

supplier-consumer relationship (i.e., e = (Sθ, c) ∈ E iff c ∈ θ). Fig 3.1 illustrates the

bipartite graph with 3 suppliers and 2 consumers for a multi-channel P2P streaming

system with 2 channels: A and B. For example, supplier SAB allocates its upload

bandwidth to consumers A and B.

Based on the resource allocation graphs, we can construct the network flow graph

for PCA to visualize the model for PCA. We introduce two artificial vertices s and

t to denote the source and sink of the network flow graph respectively. We add

edges to connect the source s with all consumer vertices in D, whose capacities are

the bandwidth demands of the correspondingly connected consumer vertices. The

capacities of edges in the original resource allocation graph are set to +∞. Then, we

divide each supplier vertex into vertices Sθ and S
′

θ connected by a single edge, whose

capacity is determined as follows. 1) If |θ| = 1, which implies that the users in Sθ

watch a single channel, then the capacity Uθ = sc +
∑
∀m∈θ um for c ∈ θ. 2) If |θ| > 1,

then the capacity Uθ =
∑
∀m∈θ um. Finally, we connect the vertices S

′

θ to the sink t,

with +∞ edge capacities. Fig 3.2 shows the network flow graph with 3 suppliers and

2 consumers.

The network flow graph for ACA differs from the graph of PCA, since a user m

who does not watch a channel, say c, is still able to help channel c. Therefore, we add

new virtual edges to resource allocation graph to construct the network flow graph

for ACA as follows. For any pair of a bandwidth supplier vertex Sθ and a bandwidth

consumer vertex c, c ∈ D, there is a virtual edge connecting them. Then, we apply

the same rules of constructing network flow graphs for PCA. An example is shown in

Fig 3.3.

Finally, the network flow graph for NBA differs from that of PCA in the capacities

of edges between the supplier and consumer vertices, which are set based on the

www.manaraa.com

70

bandwidth allocation strategy of NBA, instead of +∞. Fig 3.4 shows the network

flow for the NBA design with 3 suppliers and 2 consumers, where the two channels

have the same streaming rate.

With the network flow graphs of NBA, PCA and ACA, we can interpret the task

of determining whether a specific design has a feasible solution, in the sense that there

exists a bandwidth allocation strategy using which all channels’ bandwidth demands

are satisfied. As shown in Figs 3.2, 3.3 and 3.4, the capacities of edges connecting

the source vertex s and the consumers denote the bandwidth demands. Therefore,

if all these edges are saturated in the maximum flow of the graphs corresponding to

NBA, PCA and ACA designs (the maximum flow is equal to the total bandwidth

demand in the system), we say that the system is NBA feasible, PCA feasible and

ACA feasible, respectively (Please refer to Definitions 1, 2 and 3). Obviously, the

system-wide feasibility is a necessary condition for feasibilities of all three designs.

Furthermore, from Fig 3.3, we can see that there is no edge capacity limit for the

edge connecting a bandwidth consumer, and a bandwidth supplier and a bandwidth

consumer can request bandwidth from any bandwidth supplier with the ACA design.

Therefore, the system-wide feasible condition is also the sufficient condition for ACA

feasibility, which is stated in Theorem 2 below. Note that the reason why system-wide

feasibility implies ACA feasibility is that in our current ACA network flow graph, we

do not consider the overhead caused by ACA, which will be discussed in the following

subsection.

3.3.3 ACA model with overhead

As mentioned in Section 3.3.2, the ACA model in this chapter does not consider

the overhead caused by cross-channel cooperation. In real P2P streaming systems,

any ACA design will introduce different amount of overhead, since when a peer with

www.manaraa.com

71

+

+

+

+

+

+

+

s

B

A

t

B B

D

D

U

U

U

A

B

 S S’
B

AB AB

S S’

S S’
AB

A

AA

Figure 3.2: The network flow graph for 2-channel PCA model. The notations on
edges denote the edge capacities.

+

+

+

+

+

+

+

s

B

A

t

B B

D

D

U

U

U

A

B

 S S’
B

AB AB

S S’

S S’
AB

A

α

β

U

U

A

B

AA

Figure 3.3: The network flow graph for 2-channel ACA model. The notations on
edges denote the edge capacities. The dashed lines denote virtual edges.

s

B

A

t

B B

D

D

U

0.5U

U

U

U

U

+

+

+

A

B

B

AB

AB

A

 S S’
B

AB AB

S S’

S S’

A

AB

0.5U

A A

Figure 3.4: The network flow graph for 2-channel NBA model. The notations on
edges denote the edge capacities. We assume that rA = rB.

www.manaraa.com

72

surplus bandwidth intends to help peers watching its unwatched channels, it first

needs to download the useful data (i.e. it increases the bandwidth demand of that

channel). We use ACA-O to denote ACA with overhead. In this section, we show

that omitting the overhead is necessary for achieving a tractable model of the ACA

design and such a simplification does not change the relative order of the three designs

in terms of performance.

Determining the feasibility of ACA-O could be NP-hard. Intuitively, a consumer

determines from which supplier to request bandwidth and how much bandwidth

should be requested from that supplier, where the number of choices of both de-

cisions is exponentially large. Although searching over exponentially large space does

not necessarily imply that the problem is NP-hard, we prove below that even a sim-

plified ACA-O is NP-hard. Since with the ACA-O model, the peer with surplus

bandwidth determines which peer should be helped and how much bandwidth should

be allocated to that user while considering the overhead caused by such a cooperation.

The simplified ACA-O in this chapter refers to the case that the peer with surplus

bandwidth has the information about the bandwidth that can be allocated to differ-

ent peers and the overhead (cost) for helping these peers. Therefore, the simplified

ACA-O only needs to find out a set of peers that the peer with surplus bandwidth

could help. A decision version of the simplified ACA-O is given below.

To illustrate the simplified ACA-O, we use Fig 3.3 as an example. Since ACA

design causes overhead, it changes the edge capacity of edges between the source

s and consumers. For example, in Fig 3.3, consumer A requests bandwidth from

supplier SB, which increases the edge capacity of edge (S,A). Therefore, for simplified

ACA-O, we assume that for each consumer the amount of bandwidth requested from

each supplier is set by some scheme, which is reflected by the edge capacity of edges

between consumers and suppliers. For example, in Fig 3.3, the edge capacity of

www.manaraa.com

73

(A, SB) is some fixed number instead of +∞. Then, determining the feasibility of the

simplified ACA-O is to find out a feasible network flow in the flow graph with a set

of saturated edges between consumers and suppliers, whose starting vertices cover all

consumers. The decision version of this problem is shown below.

Simplified ACA-O Decision: Given a network flow graph of the simplified ACA-

O, G = (S,D,D
′
, {s, t}, E), where S and D denote the consumers and suppliers

respectively; D
′

denotes the mirror vertices of suppliers (e.g. S
′
B in Fig 3.3); s and

t denote the source and sink vertices; S,D,D
′
, {s, t} denotes the vertex set of the

graph; E denotes the set of edges with capacities.

Question: Is there a network flow containing a set of saturated edges between S and

D, whose starting vertices cover the vertex set S?

In order to prove that the above problem is NP-Complete, we introduce a known

NP-Complete problem Exact Weight Perfect Matching (EWPM) of a bipartite graph [28], [106].

EWPM: An edge weight bipartite graph and a positive integer α.

Question: Does there exist a perfect matching M with Weight(M) = α?

Theorem 3. Simplified ACA-O Decision is NP-Complete.

Proof: Reducing from Exact Weight Perfect Matching (EWPM) of a bipartite graph.

Step 1: Given a solution to Simplified ACA-O Decision, it can be verified in

polynomial time, since the verification time is bounded by the number of edges in the

solution. Therefore, Simplified ACA-O Decision is in class NP.

Step 2: Given an instance of EWPM, we can construct a network flow graph as

follows. We assume that the bipartite graph can be represented by G
′

= (X, Y,E
′
).

We plan to construct a network flow graph G = (S,D,D
′{s, t}, E). First, we merge

all vertices in Y into one vertex y and divide y into y1, y2 connected by an edge with

capacity α. We set S = X and D = y1 and D
′

= y2 with edges E
′

connecting S

www.manaraa.com

74

and D whose edge capacities are the weights of E
′
. Then, we add s and t, where

s connects all vertices in S with capacities +∞ and t is connected to y2 with the

capacity +∞. Finally, we place newly added edges in E. The construction process

takes polynomial time. Therefore, if there is a polynomial time algorithm which solves

Simplified ACA-O, EWPM can be solved polynomially.

Step 3: Given an instance of Simplified ACA-O, G = (S,D,D
′{s, t}, E). We

construct an instance of EWPM, G
′

= (X, Y,E
′
) as follows. We first set α to be the

sum of capacities of edges connecting vertices in D and D
′
. Then, we remove s and

t and edges connecting to them. Next, we set X = S and D = Y . The capacities of

edges connecting vertices in S and D are set to be the weight of edges connecting X

and Y . We remove D
′

and edges connecting to them. Since the number of suppliers

is larger than or equal to the number of consumers, we might need to merge some

vertices in Y as well as the connected edges to maintain even number of vertices to

guarantee a perfect matching. Finally, we add a pair of vertices a and b into X and

Y respectively. The weight of edge that connects a and b is the difference between

alpha and sum of weights of all edges in E
′

except for (a, b). Since system-wide

feasible condition holds, the weight of edge (a, b) is nonnegative.

Step 4: Combining all above steps, we prove that Simplified ACA-O is NP-

Complete and that it is equivalent to EWPM in its complexity.

To sum up, the ACA model without overhead used in studying the relative per-

formance of the three designs is reasonable and will provide meaningful comparison

results for the three designs.

3.3.4 Discussions of implementation complexity

As mentioned in Section 5.1, the implementation complexity of the three designs

increases in the order of NBA, PCA and ACA. In this subsection, we briefly discuss

www.manaraa.com

75

what are the main factors of implementation complexities for designing multi-channel

P2P streaming systems with cross-channel bandwidth sharing and how they influence

the implementation complexities of the three designs.

Below, we discuss the implementation complexities of the three designs. In gen-

eral, the signaling overhead is an important factor in evaluating the implementation

complexity (e.g. different types of signaling messages and whether the signaling pro-

cess needs to be synchronized etc.). The second important factor is whether the

design needs some optimization algorithms to achieve the design goal, which might

include several aspects. For example, most of the optimization algorithms require the

complete information about the system, such as peer population and bandwidth dis-

tributions, where some specific information gathering/estimation mechanism should

be implemented. Furthermore, the characteristics of the algorithms also influence

the implementation complexity. An algorithm whose convergence requires tight com-

munication synchronization is much more complex than that requiring only loose

communication synchronization.

The NBA design is not aware of the bandwidth imbalance of different channels

and therefore does not require any extra system bandwidth information and there is

no optimal bandwidth allocation algorithm either. By contrast, the ACA not only

requires extra system bandwidth information for optimal bandwidth allocation, but

also it needs some algorithm to find a proper/optimal way for peers to determine

whether they should subscribe to unwatched channels and which channels should

be subscribed, which results in the most complex design among the three. The

implementation complexity of PCA design falls between NBA and PCA, since it

requires extra system bandwidth information for optimal bandwidth allocation, which

is similar to ACA, but does not need to determine whether and how peers to subscribe

to unwatched channels. Note that the qualitative comparisons are based on the

www.manaraa.com

76

assumption that the three designs are implemented with reasonable mechanisms.

A poorly designed implementation of PCA is probably more complex than a well-

designed implementation of ACA.

3.4 Two-channel P2P streaming systems

In this section, we compare the three designs in a P2P streaming system with two

channels, using the closed-form feasibility discriminant.

3.4.1 The closed-form discriminant for homogenous two-channel

system with PCA Design

The simplest multi-channel system is the two-channel system. To obtain a closed-

form discriminant, we first assume that all peers have the same upload bandwidth

and the streaming rates of the two channels are the same as well. This simplified

system is referred to as homogenous two-channel system (HOMO-2 for short). In

addition, to state the problem compactly and show the procedure of obtaining the

results clearly, we represent the problem in the linear programming format.

Before presenting the results of HOMO-2, we first introduce a theorem which

will be used for establishing the closed-form results for HOMO-2 and is a variant

of Farkas’s lemma [8]. To state the theorem compactly, we use the matrix notation

to prove the theorem. Since constraints for NBA, PCA and ACA model can be

rearranged into the form ax ≤ b, the matrix notation of the constraints can be

written in the following format:

Ax ≤ b (3.16)

x ≥ 0

www.manaraa.com

77

where A denotes the coefficient matrix for the rearranged constraints and b denotes

the righthand-side values of the constraints.

Theorem 4. Given a matrix A of dimensions m × n and a vector b ∈ Rm, the

feasibility set determined by the system of inequalities (3.16) is either non-empty or

∃p ∈ Rm satisfies p ≥ 0,pTb < 0,pTA ≥ 0T, but not both.

For the simplified system, there are two channels, Channel 1 and 23 with streaming

rate r and three channel sets θ1 = {1}, θ2 = {2}, θ3 = {1, 2}. All peers have upload

bandwidth u. Other notations are the same with Section 3.3. The following theorem

shows the discriminant for PCA design.

Theorem 5. For homogenous two-channel system with PCA design (HPCA-2), the

feasibility of the bandwidth allocation problem represented by the network flow graph

is determined by ∆ = s1+s2
uN

+ Pθ1 + Pθ2 + Pθ3 − (Pθ1 + Pθ2 + 2Pθ3)
r
u

. If ∆ < 0, the

bandwidth allocation problem is infeasible, otherwise it is feasible.

Proof: Following Theorem 4, we derive the primal and dual problem for HPCA-

2 as follows (we rearranged the constraints to be in the same format as those in

Theorem 4):

Dual:

max 0Tx (3.17)

subject to

−Pθ3xθ31 ≤
s1

uN
+ Pθ1 − (Pθ1 + Pθ3)

r

u
(3.18)

Pθ3x
θ3
1 ≤

s2

uN
+ Pθ2 + Pθ3 − (Pθ2 + Pθ3)

r

u
(3.19)

xθ31 ≥ 0

3We use 1 and 2 to represent channels instead of A and B in this and next sections.

www.manaraa.com

78

Primal:

min p1(
s1

uN
+ Pθ1 − (Pθ1 + Pθ3)

r

u
) + p2(

s

u
+ (Pθ2 + Pθ3)(1−

r

u
)) (3.20)

subject to

−p1Pθ3 + p2Pθ3 ≥ 0 (3.21)

p1, p2 ≥ 0

Based on Pθ3 6= 0 and the constraint (3.21), we conclude that p2 ≥ p1. Therefore,

the objective function (3.20) has an upper bound p2 ×∆ and a lower bound p1 ×∆.

Because p1, p2 ≥ 0, the sign of ∆ determines the sign of the objective function (3.20).

If ∆ < 0, the Primal problem is unbounded, since its upper bound is negative and

any pair of p1, p2 > 0 is a certificate of infeasibility for HPCA-2 based on Theorem 4.

If ∆ ≥ 0, we cannot find a pair p1, p2 ≥ 0 that makes the primal objective function

negative, since its lower bound is always non-negative.

When Pθ3 = 0, it becomes a two-channel system with two isolated channels,

which is a special case of NBA design with no cross-channel resource sharing. ∆ =

s1+s2
uN

+ Pθ1 + Pθ2 + 0 − (Pθ1 + Pθ2 + 0) r
u

= s1+s2
uN

+ Pθ1 + Pθ2 − (Pθ1 + Pθ2)
r
u
. ∆ ≥ 0

indicates that s1 + s2 +Nu(Pθ1 +Pθ2) ≥ Nr(Pθ1 +Pθ2), which is exactly the same as

the condition for system-wide feasibility. For this system, only if u > r can it achieve

the required streaming rate.

Corollary 1. For HPCA-2, when N →∞ (i.e, the system size approaches infinity),

there exists a critical point P ? for the fraction of peers watching both channels, where

P ? = u−r
r

. If Pθ3 ≤ P ? bandwidth allocation problem is feasible, otherwise it is

infeasible.

www.manaraa.com

79

Proof: For HPCA-2, the equation

Pθ1 + Pθ2 + Pθ3 = 1 (3.22)

holds. Substitute Pθ1 + Pθ2 + Pθ3 in ∆ of Theorem 5 with equation (3.22). Thus

∆ = s1+s2
uN

+ 1− (1 + Pθ3)
r
u
. Then

lim
N→∞

∆ = 1− (1 + Pθ3)
r

u
(3.23)

Based on Theorem 5 and (3.23), if Pθ3 >
u−r
r

, the bandwidth allocation problem is

infeasible, which implies that the critical point P ? = u−r
r

.

The intuition behind Corollary 1 is that in HPCA-2, multi-channel peers consume

more bandwidth than single-channel peers, but their upload bandwidths are the same

as single-channel peers’. Therefore, they are the cause for bandwidth deficit and

the fraction of multi-channel peers that can be supported by the system is bounded.

Particularly, Corollary 1 provides the insight that the ratio of peer’s upload bandwidth

over streaming rate is a key parameter for HPCA-2 to determine whether the system

is PCA feasible. Therefore in the following general cases, we should investigate the

impact of peers’ upload bandwidth and streaming rates for different channels on the

three designs.

3.4.2 The closed-form discriminant for homogenous two-channel

system with ACA Design

We can use a similar method to obtain the closed-form discriminant for Homogeneous

2 channels with ACA design (HACA-2). However, we can use Theorem 2 to obtain

the discriminant directly.

www.manaraa.com

80

Theorem 6. The HACA-2 has the same discriminant as the HPCA-2.

Proof: Based on the system-wide feasible condition, we obtain the following inequality

HOMO-2 :

Nr(Pθ1 + Pθ2 + 2Pθ3) ≤ Nu(Pθ1 + Pθ2 + Pθ3) + s1 + s2 (3.24)

Let N → ∞, we can derive that if Pθ3 ≤ u−r
r

, HOMO-2 is system-wide feasible.

Therefore, the condition for system-wide feasibility of HOMO-2 is the same as the

condition for PCA feasibility of HPCA-2. Based on Theorem 2, we have proven

Theorem 6.

3.4.3 The closed-form discriminant for homogenous two-channel

system with NBA design

We compare the NBA and PCA design in HOMO-2 (referred to as HNBA-2) to

determine which design should be used.

For NBA design, we substitute xθ31 and xθ32 with 1
2

to the constraints of HNBA-2

and get the following conclusion. When 0 < r
u
< 1

2
, HNBA-2 is always NBA feasible.

When 1
2
< r

u
< 1, if Pθ3 ≤ min(Pθ1 , Pθ2)

2(u−r)
2r−u , HNBA-2 is NBA feasible.

Let Pmin denote min(Pθ1 , Pθ2). We can determine whether to use NBA or PCA

design by comparing Pmin
2(u−r)
2r−u and u−r

r
. If Pmin

2(u−r)
2r−u < u−r

r
, when Pθ3 in the interval

(Pmin
2(u−r)
2r−u ,

u−r
r

), PCA design should be used. If Pmin
2(u−r)
2r−u > u−r

r
, when HOMO-

2 is system-wide feasible, we should use NBA design. The precise conclusion is

summarized as follows.

Conclusion for NBA: 1) If 1
2
< r

u
< 1, and Pmin <

2r−u
2r

, when Pmin
2(u−r)
2r−u < Pθ3 ≤

u−r
r

, we should use PCA design and when Pθ3 ≤ Pmin
2(u−r)
2r−u , we should use NBA

design. 2) If 1
2
< r

u
< 1, and Pmin ≥ 2r−u

2r
, when Pθ3 ≤ u−r

r
, we should use NBA

design. 3) If 0 < r
u
< 1

2
, we should always use NBA design. We will visualize the

www.manaraa.com

81

results for NBA, PCA and ACA in next subsection.

3.4.4 Discussion

We visualize the results of HOMO-2 with Figs 3.5, 3.6 and 3.7. In these figures, for

a given r
u
, the feasible region of the three designs is represented by the area defined

by populations of peers watching only channel A (Pθ1) and channel B (Pθ2). From

Fig 3.5, we can conclude that if r
u
≤ 0.5, NBA design will be good enough. Based

on Fig 3.6 and Fig 3.7, the feasible region shrinks with the increase of r
u
, in that the

bandwidth demand in the system is close to the bandwidth supply.

Moreover, the results of HOMO-2 have two important implications for designing

real P2P streaming systems and comparing different designs. First, in a multi-channel

P2P streaming system with well balanced resources allocated among different chan-

nels (i.e. the bandwidth of different peer sets can be roughly considered the same),

the maximum achievable streaming rate is restricted by peers’ upload bandwidth and

NBA design can only support low quality videos or it requires more bandwidth than

PCA to sustain the same streaming rate. However, based on measurement stud-

ies [33] [32], the resources allocated among different channels are highly unbalanced,

which intuitively indicates that NBA design is not good enough for sustaining sat-

isfactory quality of service. Therefore, choosing the proper design is urgent for real

systems.

Second, the results of HOMO-2 analysis show that the population and upload

bandwidth of different user sets and the streaming rates of different channels greatly

influence the feasible region of different designs. In fact, these factors determine the

bandwidth supply and demand relationship in the system, which should be carefully

considered in evaluating general cases in Section 3.5. A less obvious factor shown

in HOMO-2 that influences the design space is the channel-structure, which can be

www.manaraa.com

82

Figure 3.5: Feasible regions of the three designs when r
u
≤ 0.5. All the three designs

have the same feasible region.

Figure 3.6: Feasible regions of the three designs when r
u

= 0.65. PCA and ACA have
larger feasible region, when r

u
> 0.65.

Figure 3.7: Feasible regions of the three designs when r
u

= 0.85. When r
u

increases,
the feasible regions of all three designs decreases.

www.manaraa.com

83

informally defined as the channel sets in the system. For example, in HOMO-2, there

are three channel sets: channel set {1}, set {2} and set {1, 2}, which determine the

way of cross-channel sharing. If a HOMO-2 does not have channel set {1, 2}, channel

1 and 2 cannot share resources. In real systems, there might be a large number

of channel sets corresponding to a variety of channel structures. Therefore, when

comparing different designs for the general case, the channel structure factor should

be given careful consideration.

3.5 Numerical Results

In this section, we investigate the characteristics of the three designs with extensive

numerical simulations.

3.5.1 Experiments Setup

We develop a configurable simulator using C++ and integrate it with the CPLEX [21]

optimization library to solve the bandwidth allocation problems of the three models.

Therefore, we can compare the three designs for various peer population distributions,

upload bandwidth distributions and channel structures by changing the following

parameters.

As shown in the two-channel case, the channel streaming rate, the peer upload

bandwidth and the peer population greatly influence the feasible region of the three

designs. Therefore, the design space can be determined by the channel-structure, the

peer population distribution and the peer bandwidth distribution. To explore the

design space defined above, we study each design for multi-channel systems with the

following two groups of parameters: 1) channel information parameters. 2) system

information parameters.

www.manaraa.com

84

The channel information parameters include the streaming rate rc for channel c

and the channel structure. We consider two types of channel streaming rates:

• homogeneous streaming rate, where all channels have the same streaming rate;

• heterogeneous streaming rates, where different channels have different streaming

rates, corresponding to different video qualities;

The channel structure determines whether two or more channels overlap with each

other. We use the following three types of channel structures to investigate the three

designs, as illustrated in Fig 3.8:

• a chain structure where a user can view only the feeds from either a single

camera or two consecutive cameras in a row of cameras;

• a mesh structure where every user watches a random number of channels;

• a star structure where there is one popular channel that every user watches;

{1,3}

(b)

{2}

{1,2}

{2,3} {1,2,3}

{1} {1,3}

{3}

(a)

{1}
{3}

{1,2} {1,3}

{2}

(c)

{1,2}

{1}

{1,4}

Figure 3.8: Three types of channel structures: a) chain, b) mesh, and c) star.

The above three channel structures cover a variety of general and special cases

in real system. For example, the chain structure might be an application of camera

monitoring systems used in traffic, zoo etc [81]; while the star structure might be

a P2P streaming system with Picture-in-Picture (PIP) function [67]. For a given

channel structure, the number of peers in each channel set is determined by the

system information parameters below.

www.manaraa.com

85

The system information parameters include the number of channels, the number

of peers, the maximum number of simultaneously subscribed/watched channels, the

bandwidth distribution of channel sets and the population distribution of the channel

sets. We use the beta distribution with parameters y, z to control the bandwidth and

population distribution. Beta distribution is a general type of statistical distribution,

with the probability function P (x) = (1−x)z−1xy−1

B(y,z)
, where B(y, z) is the beta function

defined as B(y, z) = (y−1)!(z−1)!
(y+z−1)!

[9]. The reason why we use beta distribution to control

the bandwidth and population distributions is that it can generate distributions with

various shapes representing different scenarios in real systems. For details, please

refer to Section 3.5.2.

The population of each channel set is determined as follows: we first arrange the

channel sets in lexicographical order and then assign a channel set a fraction f of the

total number of peers N , which means the number of peers watching that channel set

is f ∗N . We use the beta distribution to determine the fraction f . Fig 3.9 illustrates

an example of assigning population distribution to a mesh channel structure with

three channels and beta distribution parameters (2, 2).

{1,3} Channel

 Set

P
o
p
u
la

ti
o
n
 D

is
tr

ib
u
ti

o
n

{1} {2} {3} {1,2} {1,2,3}{2,3}

Figure 3.9: Population distribution of mesh structure with 3 channels, beta distribu-
tion with parameters (2,2).

Since the goal of these simulations is to compare the relative orders of the three

designs, we set total upload bandwidth of each channel set as follows: for every group

of simulations, we first calculate the total bandwidth demand based on the population

www.manaraa.com

86

of each channel set and the streaming rate of each channel. Then, we set the total

upload bandwidth supply U to be equal to the total bandwidth demand. That is, we

only consider the case the system is feasible. Finally, we use a similar method of ob-

taining population fraction to assign each channel set a fraction f
′
of the total upload

bandwidth U , generated by the bandwidth distribution function, which means that

the upload bandwidth of that channel set is f
′ ∗ U . Note that the beta distribution

for controlling upload bandwidth differs from the one for controlling population. For

example, Fig 3.10 shows how to assign bandwidth distribution for a 3-channel system

with chain channel structure, where the user sets are {1}, {2}, {3}, {1, 2}, {2, 3} and

the fractions of bandwidth of the user sets are determined by the beta distribution

with parameters (1,1). With this bandwidth setting, system-wide feasibility is guar-

anteed, which implies that ACA feasible condition always holds. Therefore, all the

simulation results show the relative performance of the three designs. For the reason

why ACA feasible condition always holds, please refer to Sections 3.3.2 and 3.3.3.

B
a
n
d
w

id
th

 D
is

tr
ib

u
ti

o
n

Channel

 Set

{3}{1} {1,2} {2} {2,3}

Figure 3.10: Bandwidth distribution of chain structure with 3 channels, beta distri-
bution with parameters (1,1).

3.5.2 Simulation Parameters

The number of peers for all simulations is 100,000. Since both bandwidth and pop-

ulation distributions influence the design space of the three designs and the space

determined by them is continuous, we try to choose as many representative cases as

www.manaraa.com

87

possible to approximate the continuous space. For the beta distribution for control-

ling population distribution, the parameters y and z vary from (1, 1) to (10, 10) with

the step size 0.5. Therefore, there are total of 19 ∗ 19 = 361 population distributions.

Among these population distributions, we first select five representative populations

to report the evaluation results for the three designs and then present the results of

all distributions.

 0.5

 1.5

 2.5

 3.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a

u
le

 o
f

B
e

ta
 d

is
tr

ib
u

ti
o

n

Probability density function

(1,1.5)
(1.5,1)

(2,6)
(8,3)

(10,10)

Figure 3.11: Five population distributions with their corresponding beta parameters.

The five population distributions are shown in Fig 3.11. The population distri-

bution with parameters (1.0, 1.5) 4, denotes that the majority of users are watching

some specific channel sets with a single channel (the channel sets are arranged in lex-

icographical order) and there are a large number of channel sets of multiple channels

with small number of users. By contrast, the population distribution with parame-

ters (1.5, 1.0) represents the opposite situation, where there a large number of users

watching multiple channels. Both cases reflect the situation that the long tail chan-

nel popularity of current video streaming applications [98] [68], such as P2P-VoD

and IPTV systems. Population distributions with parameters (2, 6) and (8, 3) repre-

sent the cases where there are some major events attracting most of the users (e.g.

Olympic Games live broadcasting), and (2, 6) denotes that most users watch channel

sets with a single channel and (8, 3) denotes that most users watch channel sets with

4we use the parameters (y, z) to represent a specific beta distribution hereinafter. For example,
(1.0, 1.5) denotes the beta distribution with parameters (1.0, 1.5).

www.manaraa.com

88

multiple channels. Finally, population distribution with parameters (10, 10) denotes

a normal population distribution. The other 356 distributions are variations of the

five distributions and some examples are shown in Fig 3.12.

 0.5

 1.5

 2.5

 3.5

 4.5

 5.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a

u
le

 o
f

B
e

ta
 d

is
tr

ib
u

ti
o

n

Probability density function

Example 1
Example 2
Example 3
Example 4
Example 5

Figure 3.12: Examples of other beta distributions used for control bandwidth and
population distributions.

Similar to controlling the populations of different channel sets, the bandwidth

distribution of these channel sets are controlled by another beta distribution with

parameters also varying from (1, 1) to (10, 10) with step size 0.5. The goal is to create

different unbalanced bandwidth distributions among different channels covering the

measurement studies [33] [32]. Therefore, for each specific population distribution, we

evaluate a total number of 19 ∗ 19 = 361 bandwidth distributions. For all population

distributions, we evaluate a total number of 361 ∗ 361 = 130, 321 cases. The size of

feasible region for a specific design with a specific channel structure is roughly defined

as the number of feasible cases over the number of totally studied cases (i.e. 361 cases

with different bandwidth distributions.). As an example, if the PCA design with a

chain channel structure and a population distribution with parameters (10, 10) has 30

feasible cases, the size of feasible solution space for this case is 30
361

= 8.3%. The size of

feasible region for a specific design with all channel structures is defined as the number

of feasible cases over the total number of studied cases (i.e. 361∗361 = 130, 321 cases

with different bandwidth and population distributions.). If the PCA design with

a chain channel structure has 20,000 feasible cases, then the overall size of feasible

www.manaraa.com

89

region for this PCA with chain is 20,000
130,321

= 15.3%.

For the chain channel structure, there are 10 channels and a peer can watch up

to 2 consecutive channels. For the mesh channel structure, there are 10 channels and

a peer can arbitrarily join/subscribe to up to 4 channels with maximum 200 channel

sets. For the star channel structure, there are 20 channels and all peers watch a

common channel and another channel. We simulate four streaming rates 300Kbps,

900Kbps, 1Mbps and 1.5Mbps in different simulation groups.

In the next subsections, we present the numerical results in two groups: 1) multi-

channel systems with homogeneous streaming rate; 2) multi-channel systems with

heterogeneous streaming rates for different channels.

3.5.3 Multi-Channel Systems With homogeneous Streaming

Rate

We study the size of feasible solution spaces for three designs with homogenous

streaming rate across all channels. Initially, we simulate the NBA and PCA designs

with a low streaming rate (300Kbps), for all channel structures and for all band-

width distributions and user population distributions. We summarize the results in

Tables 3.1, 3.2, 3.3. The simulation results show that the feasible solution space (so-

lution space for short) of NBA design with all channel structures is always empty,

because for systems with unbalanced bandwidth, without the channel-aware band-

width allocation strategy, NBA design can rarely lead to a bandwidth allocation that

satisfies the bandwidth demands for all channels. From Table 3.1, we can see that the

solution spaces of PCA design increases in the order of chain, star and mesh channel

structure. The solution space of the ACA design is 100% for all channel structures,

since we simulate the scenarios where system feasibility (refer to Definition 3.3.1.3)

is always guaranteed.

www.manaraa.com

90

Table 3.1: Relative feasible solution space size of PCA design for 300 Kbps streaming
rate

Population Distribution PCA mesh PCA chain PCA star
(1.0, 1.5) 98.6% 1.94% 22.2%
(1.5, 1.0) 99.4% 9.7% 23.3%
(2.0, 6.0) 98.9% 0.83% 20.2%
(8.0, 3.0) 99.7% 0.28% 31%
(10, 10) 98.9% 0.55% 46.5%
overall 99.1% 3.1% 35.2%

Table 3.2: Relative feasible solution space size of NBA design for 300 Kbps streaming
rate

Population Distribution NBA mesh NBA chain NBA star
(1.0, 1.5) 0% 0% 0%
(1.5, 1.0) 0% 0% 0%
(2.0, 6.0) 0% 0% 0%
(8.0, 3.0) 0% 0% 0%
(10, 10) 0% 0% 0%
overall 0% 0% 0%

Table 3.3: Relative feasible solution space size of ACA design for 300 Kbps streaming
rate

Population Distribution ACA mesh ACA chain ACA star
(1.0, 1.5) 100% 100% 100%
(1.5, 1.0) 100% 100% 100%
(2.0, 6.0) 100% 100% 100%
(8.0, 3.0) 100% 100% 100%
(10, 10) 100% 100% 100%
overall 100% 100% 100%

www.manaraa.com

91

We then simulate the NBA and PCA designs with a much higher streaming rate

(1Mbps) for all channel structures and for all bandwidth distributions and population

distributions, which corresponds to the high definition videos (HD). The simulation

results show that the solution space of PCA design does not change in HD scenarios.

Therefore, we do not list the results. Similarly, the solution space of NBA design

for all channel structures does not change with the increase of the streaming rate

and is always empty. The solution space of the ACA design is 100% for all channel

structures. Based on this group of simulations, we can conclude that for systems

with homogenous streaming rate, the solution space is not affected by the streaming

rate and the channel structure has a greater impact on the feasibilities of the three

designs. The solution space size depends on the bandwidth imbalance among different

channels and channel structures.

3.5.4 Multi-Channel Systems With Heterogeneous Stream-

ing Rates

Many of the commercial multi-channel P2P streaming systems support heterogeneous

streaming rates for different channels in order to provide different video qualities, such

as high-definition videos and standard-definition videos. Therefore, in this subsection,

we simulate multi-channel systems with heterogeneous streaming rates to investigate

their impact on the solution space of the three designs. For all of the following

simulations, the fractions of channels with streaming rate 300Kbps, 900Kbps and

1.5Mbps, are 40%, 30% and 30%, respectively.

The results are summarized in Tables 3.4, 3.5, 3.6. The solution space of the NBA

design with all channel structures is still empty, due to the even higher bandwidth

imbalance with heterogenous streaming rates. The streaming rate diversity greatly

influences the solution space of the PCA design with chain and star channel structures,

www.manaraa.com

92

Table 3.4: Relative feasible solution space size of PCA design for heterogenous stream-
ing rates

Population Distribution PCA mesh PCA chain PCA star
(1.0, 1.5) 96.1% 0% 0.55%
(1.5, 1.0) 97% 0% 0.28%
(2.0, 6.0) 97.5% 0% 0%
(8.0, 3.0) 93.9% 0% 0%
(10, 10) 97.5% 0% 0%
overall 96.7% 0.04% 0.02%

Table 3.5: Relative feasible solution space size of NBA design for heterogenous stream-
ing rates

Population Distribution NBA mesh NBA chain NBA star
(1.0, 1.5) 0% 0% 0%
(1.5, 1.0) 0% 0% 0%
(2.0, 6.0) 0% 0% 0%
(8.0, 3.0) 0% 0% 0%
(10, 10) 0% 0% 0%
overall 0% 0% 0%

Table 3.6: Relative feasible solution space size of ACA design for heterogenous stream-
ing rates

Population Distribution ACA mesh ACA chain ACA star
(1.0, 1.5) 100% 100% 100%
(1.5, 1.0) 100% 100% 100%
(2.0, 6.0) 100% 100% 100%
(8.0, 3.0) 100% 100% 100%
(10, 10) 100% 100% 100%
overall 100% 100% 100%

www.manaraa.com

93

where the solution spaces of these two channel structures shrink to almost empty, as

shown in Column 2 and 3 in Table 3.4. However, from Column 1 of Table 3.4,

for the mesh channel structure, the solution space of the PCA is almost the same

as that of the ACA design. Therefore, when building a multi-channel system with

mesh channel structure, we can use the simple PCA design, since it can achieve

a similar performance to that of ACA. The solution space change of PCA design

with the increased bandwidth imbalance due to heterogenous streaming rates implies

that PCA with mesh channel structure has the ability to balance bandwidth among

different channel; whereas chain and star channel structures eliminate such ability.

We investigate the possible reason below.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 60 120 180 240 300 360

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
V

ie
w

s

Simulation Cases

chain
star

mesh

Figure 3.13: Average number of views for different channel structures of different
simulations.

We define the average number of views for a specific channel structure as the sum of

the number of channels watched by a peer across all peers divided by the total number

of peers in the system. For example, assuming that the system has 2 peers, peer 1

watches one channel and peer 2 watches two channels. Therefore the average number

of views in the system is 1+2
2

= 1.5. From the calculation, we can see that the average

number of views depend on the channel structure and the population distribution.

Fig 3.13 illustrates the average number of views for different channel structures against

all simulated population distributions. From this figure, we can see that for the chain

and star structures the average number of views is below 2. By contrast, the average

www.manaraa.com

94

number of views for mesh structure is almost always greater than 2.5, which results in

a larger solution space for PCA. Intuitively, the average number of views reflects the

overlap among different overlays corresponding to different channels. Higher average

number of views implies higher ability of balancing the bandwidth among channels

with PCA design. The ACA design can also benefit from this result, since it can

simply maintain the average number of views to be above some threshold instead of

designing very complex schemes to maintain the helper group. For example, VUD [93]

proposes a complex scheme to maintain the helper group.

3.6 Discussion and Chapter Summary

In this chapter, we focus on two fundamental problems in designing multi-channel P2P

streaming systems: 1) what are the general characteristics of existing and potential

designs; 2) and which design can be used to achieve the desired streaming quality

with the lowest implementation complexity.

To answer the first question, we develop simple models based on linear program-

ming and network flow graphs for NBA, PCA and ACA designs, which capture the

main characteristics of cross-channel bandwidth allocation when designing multi-

channel systems. We also prove that the ACA model with overhead is NP-Complete.

To answer the second question, we first study a special homogenous two-channel

system and derive the closed-form results. Our results show that for this special

case, there is no need to use the complex ACA design. The feasible solution space of

NBA is much smaller than that of PCA. NBA can either support low quality videos

or sustain the high streaming quality while consuming more bandwidth than PCA.

Furthermore, the simple two-channel case implies that not only do the bandwidth

and population distributions influence the feasible solution space, but the channel

www.manaraa.com

95

structure of the system does as well.

Furthermore, we develop a C++ based simulator to numerically solve the cross-

channel bandwidth allocation problems with various streaming rates, channel struc-

tures, bandwidth and population distributions. The extensive numerical results show

that 1) NBA design can rarely achieve desired streaming quality in general cases;

2) for the mesh channel structure, which is the case for general multi-channel sys-

tems, the PCA design can achieve a similar performance as that of the ACA design

even with heterogenous streaming rates, which indicates that we can build a general

multi-channel system with a simpler design; 3) for special chain and star channel

structures, which correspond to special P2P applications, PCA cannot achieve the

desired streaming quality in most cases and therefore the more complex ACA design

should be used. 4) for multi-channel systems, where the channels are isolated from

one another (i.e. different channels do not overlap), ACA should always be used. In

addition, based on simulations, we can use simple schemes instead of complicated

membership management approaches in ACA design to provide desired streaming

quality, which should maintain the average number of views in the systems above 2.5.

Due to simplicity reasons, our approaches of comparing the three designs have two

limitations: 1) we do not study the system performance at transition states, which

implies that our model lacks the ability of analyzing the performance under peer

dynamics (e.g., channel switching, peer leaving); and 2) our models do not precisely

model the implementation complexity of the three designs and our discussions are

based on the intuition that ACA has the highest implementation complexity and

NBA has the lowest implementation complexity. The latter will be worth studying in

future work, since it will have broader impact on analyzing the design of distributed

systems.

www.manaraa.com

96

Chapter 4

Statistically Guaranteed Streaming

Quality for P2P Live Streaming

4.1 Admission Control Problem in P2P Streaming

Systems

Even though peer-to-peer (P2P) live streaming has been extensively studied [51], most

of the literature focuses on how to provide best-effort streaming quality by efficiently

using system bandwidth. That is, a P2P streaming system makes its best effort to

provide good streaming quality by constructing an efficient P2P overlay architecture

and running an efficient block scheduling algorithm; however, there is no guarantee

about the provided streaming quality.

This chapter considers how to provide guaranteed streaming quality to a P2P live

streaming system. Due to the dynamic nature of a P2P system, it is impossible to

provide an absolute guarantee. Instead, we consider a statistical guarantee, which

ensures that the streaming quality provided by a P2P system is statistically guaran-

teed. Statistically guaranteed streaming quality can greatly improve the satisfaction

www.manaraa.com

97

of streaming users, compared to the best-effort streaming quality provided by the cur-

rent P2P live streaming systems. In some cases, statistically guaranteed streaming

quality is highly desired. For example, for a P2P live streaming system with some free

channels and some paid channels, it is highly desirable that a paid channel provides

a high streaming quality guarantee probability, whereas a free channel provides only

best-effort streaming quality or a low streaming quality guarantee probability.

There are two different ways to provide statistically guaranteed streaming quality.

First, at the individual peer level where the specific streaming quality provided to

each peer is statistically guaranteed. Second, at the overall channel level where the

average streaming quality provided to the whole channel is statistically guaranteed.

The peer-level quality guarantee can provide a more accurate guarantee for each peer;

however, it heavily depends not only on the overall system bandwidth but also on

the underlying overlay construction method and block scheduling algorithm. On the

other hand, the channel-level quality guarantee mainly depends on the overall system

bandwidth. In addition, even though the channel-level quality guarantee cannot

ensure the accurate streaming quality provided to each individual peer, it ensures

the average streaming quality provided to all peers of a channel. In this chapter, we

consider only the channel-level quality guarantee.

A fundamental problem in providing statistical channel-level quality guarantee is

the statistical bandwidth guarantee problem, which is how to statistically guarantee

that a channel has sufficient overall bandwidth for its streaming. We assume that the

upload capacity of users is the only bottleneck for a P2P live streaming system. That

is, the download capacity of a user is higher than the streaming rate, and bandwidth

bottlenecks are located at the edges instead of the core of the Internet, which are

reasonable assumptions [90] for the current Internet. With these assumptions, the

statistical bandwidth guarantee problem becomes how to guarantee that the probability

www.manaraa.com

98

for a channel to have sufficient overall upload bandwidth is higher than a threshold.

In order to achieve statistical bandwidth guarantee, we study a class of admission

control algorithms, which admits or rejects a user based on the user information and

the channel state. Another way to achieve statistical bandwidth guarantee is to drop

users when a P2P system has insufficient overall bandwidth. However, dropping a

user is usually considered more annoying to the user than rejecting a user, thus in

this chapter, we consider only admission control algorithms. We are particularly in-

terested in the user-behavior insensitivity of an admission control algorithm, which is

whether the algorithm performance is insensitive to the fine statistics of user behav-

iors including both the distribution of user inter-arrival times and the distribution of

user lifetimes. This is because we believe that user-behavior insensitivity is the key

to designing an admission control algorithm that is robust and has predictable band-

width guarantee in a dynamic and heterogeneous P2P system. We have the following

observations from our results.

• There is a tradeoff between the user blocking rate and user-behavior insensitivity

when maintaining the same bandwidth guarantee. Intuitively, this is because in

order to reduce the user blocking rate, an algorithm uses more channel state

information, which however makes the algorithm more sensitive to the statistics

of user behaviors.

• The statistical bandwidth guarantee achieved by an algorithm is more sensitive

to the distribution change of user inter-arrival times than to that of user life-

times. Our simulation results show that the bandwidth guarantee probability

obtained with a Poisson user arrival process can be used as the upper bound

of the probability for general user arrival processes. The bandwidth guarantee

probability obtained with an exponential user lifetime distribution can be used

as a good estimate of the probability for general user lifetime distributions.

www.manaraa.com

99

The rest of the chapter is organized as follow. Section 4.2 reviews the related

work. Section 4.3 formulates the problem of statistical bandwidth guarantee. Sec-

tion 4.4 proposes a class of admission control algorithms. Section 4.5 evaluates the

performance of these admission control algorithms by simulation. Finally, Section 4.6

concludes the chapter.

4.2 Comparison With Existing Work

The proposed statistical streaming quality guarantee for a P2P live streaming system

(referred to as P2P Quality of Service, or P2P QoS) is different from the traditional

QoS for IP networking (referred to as IP QoS) [16, 11, 22]. IP QoS focuses on the

bandwidth allocation in the Internet backbone, and it mainly considers the bandwidth

mismatch between the edges and backbone of the Internet [22]. On the other hand,

P2P QoS focuses on the upload-bandwidth allocation at the Internet edges, and it

mainly considers the bandwidth asymmetry between the download and upload at

the Internet edges. The current Internet has both asymmetric users (e.g. cable

and Asymmetric Digital Subscriber Line (ADSL) users) and symmetric users (e.g

Symmetric Digital Subscriber Line (SDSL) users), and we believe that the future

Internet will remain as it is due to the heterogeneous nature of the Internet.

Admission control has been extensively studied in IP [36], ATM [65], wireless [6],

and satellite [74] networks to provide bandwidth guarantee. However, existing ad-

mission control algorithms cannot be directly applied to P2P systems, since they are

fundamentally different from previous types of networks, in that the total upload

capacity of a P2P system is dynamic and dependent on the total number of users,

which however is not the case for other types of networks.

Due to the dynamic nature of a P2P system, it is very challenging to provide

www.manaraa.com

100

statistical service guarantee for a P2P system. There is very little related work on

this topic. Bindal et al. [10] examine the factors that determine the statistical ser-

vice guarantee in P2P file sharing applications, such as BitTorrent. They conclude

that “self-organizing P2P file distributions indeed need external help in order to pro-

vide QoS guarantees, but such guarantees are achievable with proper enhancements

to the P2P network.” Raghuveer et al. [69] consider how to ensure that each peer

gets sufficient bandwidth with a high probability if the system has sufficient overall

bandwidth. Kung et al. [41] and Xu et al. [94] use admission control to determine

whether a peer should accept the request of another user to be a neighbor. Different

from previous works, our work considers how to use admission control to ensure that

the system has sufficient overall upload capacity with a high probability.

4.3 Problem Formulation

This section proposes a queueing model used to study the statistical bandwidth guar-

antee for a channel of a P2P live streaming system. The notation is summarized in

Table 4.1.

Inspired by the stochastic fluid model by Kumar et al. [40], we model a channel

of a P2P system by the queueing model shown in Figure 4.1, which captures two

fundamental properties of P2P streaming, i.e., heterogeneous upload capabilities and

peer churn. For example, CoolStreaming [42] conducted an experiment in 2006 with

a streaming rate (denoted by r) of 768Kbps. Their results show that about 7% users

can upload the stream at a rate higher than r, about 10% users can upload at a rate

between r and r/2, about 20% users can upload at a rate between r/2 and r/6, and

the remaining 63% users can upload at a rate even lower than r/6. This experiment

clearly shows the different upload capabilities of different users.

www.manaraa.com

101

Notation Description
r streaming rate
cS the upload capacity of the streaming server
λH average arrival rate of super users
λL average arrival rate of ordinary users

1/µH average life time of super users
1/µL average life time of ordinary users
cH upload bandwidth of a super user
cL upload bandwidth of an ordinary user
NH number of super users
NL number of ordinary users
C total upload bandwidth of a system
R total required bandwidth of a system
δ required bandwidth guarantee probability

Table 4.1: Notation

Our model considers two classes of users (and can be extended to more classes).

Class 1 contains a group of super users each capable of uploading at a high rate of cH ,

and class 2 contains a group of ordinary users each capable of uploading at a low rate of

cL. We have cH > r > cL. A new user arrives at the system randomly with an average

rate of λH and λL for a super user and an ordinary user, respectively. A new user

may be admitted or rejected (also called blocked) by an admission control algorithm

based on the upload bandwidth of the user and the current state of the system. If a

user is admitted, it stays in the system for a random lifetime with average 1/µH and

1/µL for a super user and an ordinary user, respectively. Each class is modeled as a

state-dependent processor-sharing (PS) queueing node [15] shown in Figure 4.1. The

service rate of a queueing node depends on the current node state. For example, the

service rate of the super user node (i.e., the top node in the figure) is NHµH , where

NH is the current number of super users.

We say that a system has sufficient upload bandwidth if C ≥ R, where C and R

denote the total upload bandwidth and the total required bandwidth, respectively.

The total upload bandwidth C of the system is a function fC(·) of the current system

www.manaraa.com

102

L

PS

PS

N µ

µN

H H

L L

λ
H

λ

Figure 4.1: A state-dependent processor-sharing (PS) queueing model for a channel
of a P2P live streaming system with two types of users: super users and ordinary
users.

state as defined below

C = fC
(
NH , NL

)
= NH × cH +NL × cL + cS (4.1)

where cS is the upload capacity of the streaming server. The total required bandwidth

R of the system is a function fR(·) of the current system state as defined below

R = fR
(
NH , NL

)
=
(
NH +NL

)
× r × ε (4.2)

where ε ≥ 1.0 indicates the control overhead and bandwidth inefficiency of the sys-

tem, and depends on the underlying overlay architecture and block scheduling algo-

rithm of the system. For example, packet-level simulation results [102] show that ε is

about 1.15 for an overlay with a mesh-based overlay architecture and a random block

scheduling algorithm.

Finally, the statistical bandwidth guarantee problem is to determine whether a new

user is admitted or rejected in order to guarantee P[C ≥ R] ≥ δ, where δ is the

required bandwidth guarantee probability.

We are interested in the following performance metrics when evaluating an ad-

mission control algorithm for achieving statistical bandwidth guarantee.

• Implementation Difficulty : How difficult is it to implement the algorithm?

www.manaraa.com

103

• Blocking Rate: What is the average blocking rate for the algorithm to achieve

a certain bandwidth guarantee probability δ?

• Retry Robustness: How robust is the algorithm in case that a rejected user

repeatedly retries its admission request?

• User-Behavior Insensitivity : How insensitive is the algorithm to the fine statis-

tics of user behaviors (i.e., user arrival process and user lifetime distribution)?

4.4 Admission Control Algorithms

In this section, we propose three admission control algorithms for achieving statistical

bandwidth guarantee.

Inspired by insensitive load balancing work by Bonald et al. [12], we study the

following three admission control algorithms for a channel.

1. Static User Admission Control (SUAC) admits all super users into the channel,

and randomly admits an ordinary user with probability βSUAC , where βSUAC ∈

[0, 1].

2. Semi-Static User Admission Control (SSUAC) admits all super users, and ad-

mits an ordinary user if the following condition is true, where βSSUAC ∈ [0, 1].

fR
(
E[NH], NL + 1

)
fC (E[NH], NL + 1)

≤ βSSUAC (4.3)

3. Dynamic User Admission Control (DUAC) admits all super users, and admits

an ordinary user if the following condition is true, where βDUAC ∈ [0, 1].

fR
(
NH , NL + 1

)
fC (NH , NL + 1)

≤ βDUAC (4.4)

www.manaraa.com

104

Since the upload bandwidth cH of a super user is greater than the streaming rate

r, all three algorithms always admit a super user. But they make different admission

decisions for an ordinary user. SUAC is “static” in the sense that its admission

decision for an ordinary user does not depend on the current system state (i.e. NH

and NL), whereas DUAC is “dynamic” in that its admission decision depends on the

current system state. SSUAC is “semi-static” since its admission decision depends

only on the current state of ordinary users (i.e. NL) but not on the current state of

super users (i.e. NH).

Below, we compare these three admission control algorithms according to the

performance metrics described in Section 4.3.

• Implementation Difficulty : SUAC is the easiest to implement, since it does not

need to measure anything. DUAC is the hardest to implement, since it is not

trivial to accurately and quickly measure the current NH and NL. SSUAC

is in the middle, since the average value of NH can be obtained by using the

history information and then it only needs to accurately and quickly measure

the current NL.

• Blocking Rate: Intuitively, since DUAC makes a dynamic decision based on the

current channel state, it should achieve the lowest blocking rate for a given δ,

whereas SUAC makes a static decision, it should achieve the highest blocking

rate. The performance of SSUAC should fall somewhere in between. This is

verified in the next section by numerical results.

• Retry Robustness: Both SSUAC and DUAC are robust in case of user retries,

since for a given system state, no matter how many times a rejected ordinary

user retries its admission request, it will always be rejected by both SSUAC

and DUAC. However, with SUAC, a rejected ordinary user can keep retrying

www.manaraa.com

105

its admission request until it is finally admitted. One possible solution for SUAC

is to keep track of all recently rejected users (e.g. their IP addresses).

• User-Behavior Insensitivity : Intuitively, since DUAC is more dynamic than

SUAC (i.e., more dependent on the channel state), DUAC is more sensitive

to the fine statistics of user behaviors than SUAC. Specifically, we have the

following insensitivity theorem.

We say that an admission control algorithm is insensitive to the user lifetime

distribution, if the steady state distribution of a P2P live streaming system using this

algorithm depends only on the average lifetime (i.e. 1/µH) of super users and that

(i.e., 1/µL) of ordinary users, but does not depend on the lifetime distribution of

super users and that of ordinary users. We have the following theorem.

Theorem 7. Under the assumption that a super user arrives as a Poisson process and

an ordinary user arrives as a Poisson process, the sufficient and necessary condition

for an admission control algorithm to be insensitive to the lifetime distribution is that

its admission decisions do not depend on the current number of super users (i.e.,

NH).

Proof: Let aH(NH , NL) and aL(NH , NL) denote the arrival rate of admitted super

users and that of admitted ordinary users, respectively, when there are NH supers

users and NL ordinary users.

According to the insensitivity theory of processor-sharing queueing networks de-

veloped by Bonald and Proutere [14, 12], the queueing model shown in Figure 4.1 is

insensitive to the user lifetime distribution if and only if

aH(NH , NL)aL(NH + 1, NL) = aH(NH , NL + 1)aL(NH , NL)

www.manaraa.com

106

Since every super user is admitted, we have aH(NH , NL) = λH for any NH and

NL, and thus the sufficient and necessary condition for insensitivity becomes

aL(NH + 1, NL) = aL(NH , NL)

That is, the admission decision is independent of NH , but can be dependent on

NL.

It is then easy to see that both SUAC and SSUAC are insensitive to the user life-

time distribution under the Poisson user arrival assumption, but DUAC is sensitive to

the user lifetime distribution. This implies that the bandwidth guarantee probability

achieved by SUAC and SSUAC depends on the user lifetime distribution through the

mean only.

We say that an admission control algorithm is insensitive to the user arrival pro-

cess, if the steady state distribution of a P2P live streaming system using this algo-

rithm depends only on the average arrival rate (i.e. λH) of super users and that (i.e.,

λL) of ordinary users, but does not depend on the inter-arrival time distribution of

super users and that of ordinary users.

However, we do not have a theorem for the insensitivity to the user arrival process,

and as shown in the next section, all three algorithms are sensitive to the user arrival

process.

4.5 Numerical Results

In this section, we compare these three admission control algorithms with numerical

results obtained for the queueing model shown in Figure 4.1. We study a P2P live

streaming system with the following parameters. Streaming rate r is 3, upload rate

cH of a super user is 7, and upload rate cL of an ordinary user is 1. According

www.manaraa.com

107

to [40], these three values approximately reflect the actual settings of a typical P2P

live streaming system (for example, when the rate unit is 100Kbps). The upload

capacity cS of the streaming server is 14. Limited by the memory space required to

measure the state distribution P(NH , NL), we consider a small P2P system with an

average of 25 super users and 50 ordinary users by setting λH = 50, λL = 100, and

µH = µL = 2. If the time unit is 1 hour, this implies that a user stays in the system

for an average of 0.5 hours. All results are obtained by simulating the system for

1,000,000 time units.

4.5.1 Blocking Rate of Ordinary Users

In this group of simulations, we study the blocking rate of each admission control

algorithm in order to achieve a required bandwidth guarantee probability δ. We

consider a system where both super users and ordinary users have a Poisson arrival

process and an exponential lifetime distribution (other types of arrival processes and

lifetime distributions are studied in Section 4.5.3). We simulate each algorithm with

its parameter varying from 0 and 1, and then measure the blocking rate of ordinary

users (i.e., the ratio of the number of rejected ordinary users to the total number of

arrived ordinary users) and the bandwidth guarantee probability (i.e., the probability

that the system has sufficient overall bandwidth). Finally, for each algorithm we find

the blocking rate corresponding to a given bandwidth guarantee probability δ.

Figure 4.2 shows the blocking rate of each admission control algorithm for a band-

width guarantee probability δ. We can see that for the same admission control al-

gorithm, a higher blocking rate is required to achieve a higher bandwidth guarantee

probability. We can also see that to achieve the same bandwidth guarantee probabil-

ity, DUAC has the smallest blocking rate, followed by SSUAC and finally SUAC. For

example, in order to achieve 99.9% bandwidth guarantee probability, the blocking

www.manaraa.com

108

rate of DUAC is 19% (with βDUAC=80%), the blocking rate of SSUAC is 41% (with

βSSUAC=48%), and the blocking rate of SUAC is 50% (with βSUAC=50%).

In all the following simulations, we set βDUAC = 80%, βSSUAC = 48%, and

βSUAC=50%, so that all three algorithms can achieve the same bandwidth guar-

antee probability of 99.9% with a Poisson arrival process and an exponential lifetime

distribution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.991 0.993 0.995 0.997 0.999

B
lo

c
k
in

g
 R

a
te

 o
f
O

rd
in

a
ry

 U
s
e
rs

Required Bandwidth Guarantee Probability δ

SUAC
SSUAC

DUAC

Figure 4.2: DUAC makes an admission decision based on the current channel state,
and then has the smallest blocking rate among all three admission control algorithms
in order to achieve a required bandwidth guarantee probability.

 0.7

 0.8

 0.9

 1

 0 1 2 3 4

B
a
n
d
w

id
th

 G
u
a
ra

n
te

e
 P

ro
b

Number of Retries

SUAC

SSUAC

DUAC

Figure 4.3: SUAC is not robust in case of user retries. That is, the bandwidth
guarantee probability achieved by SUAC highly depends on how many times a rejected
user retries its admission request.

4.5.2 Retry Robustness

Figure 4.3 shows the bandwidth guarantee probability achieved by each admission

control algorithm when a rejected user retries its admission request. These results are

www.manaraa.com

109

obtained for a system where both super users and ordinary users have a Poisson arrival

process and an exponential lifetime distribution. We can see that the bandwidth

guarantee probability achieved by both DUAC and SSUAC is always 99.9%, no matter

how many times a rejected user retries its admission request. However, the bandwidth

guarantee probability achieved by SUAC drops very quickly as a rejected user retries

its admission request for more times.

4.5.3 User-Behavior Insensitivity

We first study the insensitivity to the user lifetime distribution. Motivated by the

observation [78] that there are a small number of users who stay in the system for

a very long time, we simulate a Pareto lifetime distribution. The lifetime of every

user follows a Pareto distribution with a fixed mean 1/µH = 1/µL = 0.5 and a shape

parameter k varying from 1.52 to 1.52×8. The arrival process of a super user and an

ordinary user is still a Poisson arrival process.

Figure 4.4 shows the state distribution P(NH , NL) of each admission control algo-

rithm with NH = 10 for k = 1.52 and 1.52×8. We can see that the state distribution

of SUAC and SSUAC is insensitive to the user lifetime distribution, but the state

distribution of DUAC is sensitive (although only slightly). This is consistent with

Theorem 7. Figure 4.5 shows their bandwidth guarantee probabilities. We can see

that the bandwidth guarantee probability achieved by SUAC and SSUAC does not

depend on the lifetime distribution since they are insensitive to the lifetime distribu-

tion. We also observe that the bandwidth guarantee probability achieved by DUAC

depends slightly on the lifetime distribution, and this is because the state distribution

of DUAC is only slightly sensitive to the lifetime distribution.

Next, we study the insensitivity to the arrival process. Motivated by the observa-

tion [31] that the user arrival rates during different time intervals are different (e.g.,

www.manaraa.com

110

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 10 15 20 25 30 35 40
P

ro
b
a
b
ili

ty
 P

(1
0
,
N

L
)

Number of Ordinary Users N
L

SUAC
SSUAC

DUAC

Figure 4.4: The state distribution of SUAC and SSUAC is insensitive to the lifetime
distribution, but that of DUAC is sensitive (although only slightly). This is consistent
with Theorem 7.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1.52 3.04 6.08 12.16

B
a
n
d
w

id
th

 G
u
a
ra

n
te

e
 P

ro
b

Pareto Shape Parameter

SUAC
SSUAC

DUAC

Figure 4.5: The bandwidth guarantee probability of SUAC and SSUAC does not
depend on the lifetime distribution, and that of DUAC depends slightly on the lifetime
distribution.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 10 20 30 40 50 60

P
ro

b
a
b
ili

ty
 P

(3
0
,
N

L
)

Number of Ordinary Users N
L

SUAC
SSUAC

DUAC

Figure 4.6: The state distribution of all three algorithms is sensitive to the user arrival
processes.

www.manaraa.com

111

 0.98

 0.985

 0.99

 0.995

 1

4211/21/4

B
a
n
d
w

id
th

 G
u
a
ra

n
te

e
 P

ro
b

IPP (OFF Duration)/(ON Duration)

SUAC
SSUAC

DUAC

Figure 4.7: The bandwidth guarantee probability of SUAC slightly depends on the
arrival processes, and that of SSUAC and DUAC highly depends on the arrival pro-
cess.

higher arrival rate at the beginning of a program), we simulate an Interrupted Pois-

son Process (IPP). An IPP is an ON/OFF process, where both an ON period and

an OFF period are exponentially distributed, and users arrive as a Poisson process

only during an ON period. A super user arrives as an IPP with an average arrival

rate of λH = 50, and an ordinary user arrives as an IPP with an average arrival rate

of λL = 100. We set the average ON period to 1/16, which is much shorter than the

average user lifetime (i.e., 1/2). We vary the average OFF period from 1/4 to 4 times

of the average ON period, and we also adjust the user arrival rate in an ON period

accordingly to maintain the same average user arrival rate. Both a super user and an

ordinary user have an exponentially distributed lifetime.

Figure 4.6 shows the state distribution P(NH , NL) of each admission control algo-

rithm with NH = 30 when the average OFF period is 1/4 and 4 times of the average

ON period. We can see that the state distribution of all three algorithms is sensitive

to the user arrival process. Figure 4.7 shows their bandwidth guarantee probabilities.

We can see that the overall bandwidth guarantee probability of SUAC slightly de-

pends on the user arrival processes, and that of SSUAC and DUAC highly depends

on the user arrival process. Note that, when the average OFF period is 1/4 times of

the average ON period, an IPP is very similar to a Poisson process, and this is why

www.manaraa.com

112

at that time, all three algorithms achieve 99.9% bandwidth guarantee probability.

Comparing Figure 4.2, Figure 4.4, and Figure 4.7, we can see that there is a

tradeoff between the user blocking rate and user-behavior insensitivity. Intuitively,

this is because in order to reduce the user blocking rate, an algorithm uses more

channel state information, which however makes the algorithm more sensitive to the

statistics of user behaviors. Comparing Figure 4.5 and Figure 4.7, we can see that

the statistical bandwidth guarantee achieved by an algorithm is more sensitive to the

distribution changes of user inter-arrival times than to the distribution changes of

user lifetimes. The simulation results show that the bandwidth guarantee probability

obtained with a Poisson user arrival process can be used as the upper bound of the

probability for general user arrival processes. The bandwidth guarantee probability

obtained with an exponential user lifetime distribution can be used as a good estimate

of the probability for general user lifetime distributions.

4.6 Chapter Summary

In this chapter, we studied a class of admission control algorithms in order to provide

statistically guaranteed streaming quality to a P2P live streaming system. In par-

ticular, we studied their insensitivity to the fine statistics of user behaviors. In the

future, we plan to study admission control algorithms for a P2P live streaming system

where a user can simultaneously watch multiple channels, and an admission control

algorithm is used to decide whether to accept not only the request of a new user to

join the system but also the request of an existing user to watch a new channel.

www.manaraa.com

113

Chapter 5

On Providing Optimal Quality of

Service in P2P Streaming Systems

5.1 Bandwidth Allocation and Block Scheduling

in P2P Streaming Systems

Providing high quality of streaming service is an ultimate design goal for P2P stream-

ing systems and numerous designs are proposed to achieve this goal. Earlier works on

data swarming algorithms such as CoolStreaming [104] and GridMedia [29], show that

data-driven approach is a very effective design for disseminating data among peers in

an overlay network. Magharei et al. [55] suggest building mesh-based overlay for P2P

streaming systems. All of these works have been used in commercial deployments

(e.g., PPLive [66]). Recently, UUSee [77], one of the top three P2P streaming ser-

vice providers in China, integrated network coding into its client software to improve

system streaming quality [53].

Informally, the system-wide optimal streaming quality implies that all peers in the

system are able to watch the subscribed channel at the source video rate. The system-

www.manaraa.com

114

wide streaming quality mainly depends on how to use peer’s upload bandwidth for

video stream delivery and how to request useful data from neighboring peers. In this

chapter, we study the problem of providing system-wide optimal streaming quality

from the perspective of allocating upload bandwidth and requesting useful video data.

Our goal is to propose generic methods of developing protocols for various applications

and provide guidelines for system designers. We mainly focus on mesh-based overlays,

since they are widely used in both academia and industry.

In P2P streaming systems, a peer can upload data to and download data from

neighbors. Therefore, we distinguish it as a server peer and a client peer, respectively,

when it takes different roles. Server peers allocate their corresponding upload band-

width1 to their neighboring peers for sending requested data to them, with the goal of

minimizing the overlay congestion at these peers (e.g., allocating more bandwidth to

a peer needing a large amount of data than the one needing a small amount of data.).

This process is referred to as bandwidth allocation (BA). Simultaneously, client peers

request missing data from neighboring peers to minimize the streaming cost (e.g., the

total delay incurred by the requested data), which is referred to as content scheduling

(CS)2.

Existing designs usually solve the two problems separately. It means that a spe-

cific design only focuses on solving one of the two problems. For example, the network

flow based optimal block scheduling algorithm [101] assumes that the bandwidth allo-

cation problem has been solved and uses historical records to estimate the bandwidth

allocation. Wu et al. [88] propose an optimal bandwidth allocation algorithm in co-

1In P2P literature, we assume that the bandwidth bottlenecks occur at network edges instead of
the network core. Moreover, peers’ upload bandwidth as the bottleneck is widely accepted by the
P2P community, since the download bandwidth is much higher than the upload bandwidth in access
networks.

2We use content scheduling to refer to the general process of requesting missing video data,
because video data can be represented either as continuous substreams or discrete data blocks. If
video stream is divided into blocks, we call the process as block scheduling.

www.manaraa.com

115

existing overlays based on game theory, where network coding is used to simplify

content scheduling. Figure 5.1 shows the interaction between BA and CS solutions.

In practice, the algorithms for solving the two problems are carried out in an iterative

manner. Algorithms solving BA take the solution of CS as an input and vice versa.

Intuitively, optimal solutions to the two separate problem do not necessarily lead to

system optimal solutions, because these solutions might not be Pareto Optimal (e.g.,

the optimal solution to BA might have a negative influence on CS ’s performance).

Therefore, to provide optimal quality of service for the whole P2P streaming system,

we should carefully consider the interaction between BA and CS. Our contributions

can be summarized as follows:

1) We first establish generic nonlinear optimization models for solving the two

problems, which have good convergence properties with continuous and twice differ-

entiable objective functions. Engineers can directly use these models to design specific

protocols via replacing the generic objective functions with specific functions.

2) Instead of establishing complex joint optimization models, we analyze the in-

teraction between BA and CS solutions with a two-player game theoretic model.

Based on our analysis, if objectives of BA and CS are aligned, iteratively solving

BA and CS can lead to Nash Equilibrium, which is system-wide optimal. If they

are misaligned, the gap between system-wide suboptimal and optimal solutions can

be arbitrarily large, where joint optimization should be used. For specific objective

functions (e.g., affine), the gap is bounded, which can provide a lower bound for

system-wide streaming quality.

3) We design and implement three groups of bandwidth allocation and block

scheduling algorithms using a packet-level simulator, which demonstrate how to use

our proposed models for designing new protocols. Moreover, extensive packet-level

simulations confirm our analysis and help us gain a better understanding of the inter-

www.manaraa.com

116

action between BA and CS solutions. With our results, engineers can easily choose

proper designs for different application scenarios. Once a design is selected, the new

algorithms can be implemented following our examples.

Content Scheduling Pattern

Bandwdith Content
Scheduling

Bandwidth Allocation Pattern

Allocation

Figure 5.1: Interaction between BA and CS.

The rest of this chapter is organized as follows. Section 5.2 summarizes the related

work in block scheduling and techniques used for studying efficiency loss between

suboptimal and optimal solutions. Section 5.3 defines the optimization and game

theory models with analytical results for studying interaction between BA and CS.

We describe our simulation settings and results in Section 5.5. Finally, we conclude

this chapter and discuss future works in Section 5.6.

5.2 Comparison With Existing Work

Bandwidth is essentially important for P2P streaming systems. Kumar et al. [40]

establish a fluid model to study the impact of a peer’s upload bandwidth and prove

conditions for achieving universal streaming (i.e., the streaming rate achieved by the

system is equal to the source video rate). Zhang et al. [102] study the bandwidth

influence on data block scheduling algorithms via extensive packet-level simulations.

They show that random block scheduling can achieve near-optimal streaming quality

when the total upload bandwidth is at least 1.2 times of required bandwidth. More-

over, measurement studies and implementations [32] [42] also confirm that bandwidth

www.manaraa.com

117

has a great impact on streaming quality for P2P streaming systems. Recently, re-

searchers have proposed methods for improving streaming quality in multi-channel

P2P streaming systems through optimally allocating bandwidth among different chan-

nels. Wu et al. [88] first study the bandwidth competition among coexisting overlays

and propose an auction-based solution. The View-Upload Decoupling (VUD) [92]

is a design that allows peers contributing upload bandwidth to unwatched channels.

Our previous work [86] compares different bandwidth allocation schemes in multi-

channel system via linear programming models. The above works are unaware of

data blocks (content) and assume that bandwidth can be efficiently utilized by some

content scheduling algorithms.

Compared with bandwidth, block scheduling algorithms are designed to fully uti-

lize the bandwidth allocated among peers. Zhang et al. [101] propose an optimal

block scheduling algorithm considering the priorities of missing data blocks based on

a maximum flow model. Guo et al. [30] develop the AQCS block scheduling algo-

rithm for P2P live streaming based on adaptive queueing models. Random Useful

(RU) packet selection strategy [58] is proved to be rate optimal. All these algorithms

assume that the end-to-end bandwidth allocation is known. For example, the block

scheduling algorithm proposed in [101] uses the historical overlay link utilizations for

future block scheduling. RU’s proof assumes that the overlay link utilizations are

known and fixed.

Network coding [79] has been theoretically proved to be useful for eliminating

the data block diversities. Specifically, the coded data blocks can be considered as

fluids and the theoretical optimal performance can be achieved [40] [58]. Tomozei

et al. [23] apply random linear network coding to cost-efficient flow control in P2P

systems and prove the rate optimal conditions. Liu et al. [53] integrated network

coding to UUSee [77] and reported the large scale measurements. They conclude

www.manaraa.com

118

that although network coding is very useful in improving streaming quality, it has

weaknesses as well. For example, the client peer should send messages to stop the

flows from server peers, which might possibly waste bandwidth due to redundant

blocks. To sum up, network coding cannot perfectly substitute all block scheduling

algorithms in all scenarios.

Game theoretic models have been used for analyzing the interactions among mul-

tiple parties. Liu et al. [52] analyze the interaction between overlay routing and

traffic engineering with a two-player game model. Efficiency loss in selfish routing

is well studied by Roughgarden et al. [70], where they establish bounds for rout-

ing with linear cost functions. Jiang et al. [38] propose a joint optimization model

for solving the tussle between traffic engineering and content distribution. Similar

to [38], DiPalantino et al. [26] study the cooperation between traffic engineering and

content distribution as well, focusing on analysis of efficiency loss in non-cooperative

scenarios. Although we borrow proof techniques from the above works, we establish

new models for P2P streaming systems, which are different scenarios compared with

routing.

5.3 Models for bandwidth allocation and content

scheduling in P2P streaming

In this section, we describe the network model and the formal formulations of the

bandwidth allocation and the content scheduling problems. The notation used in

this chapter will be introduced in the following subsections and is summarized in

Table 5.1.

We consider an overlay network represented by G = (V,E), where V represents

peers and E represents the neighboring relationship among peers. As mentioned in

www.manaraa.com

119

Table 5.1: Key Notation Summary
Notation Description
G Overlay graph G = (V,E).

V set of nodes, E set of links
NBR(i) neighbor set of peer i
K number of substreams
Ci upload capacity of peer i
dki peer i’s demand for substream k
ski the amount of substream k held by peer i
r streaming rate
πij fraction of traffic flow

sent from peer i to peer j
~π bandwidth allocation pattern

~π = (πij)
akij peer j’s request of

substream k from peer i
~a content scheduling pattern

~a = (akij)

eij total amount of content
requested by peer j from peer i

fij(·) the actual data flow
sent from peer i to peer j,
determined by ~π and ~a

Sij(·) the cost function used
by bandwidth allocation

Dij(·) the cost function used
by content scheduling

www.manaraa.com

120

Section 5.1, we consider a mesh-based overlay and therefore each peer i maintains a

neighbor set NBR(i), where ∀j ∈ NBR(i), (i, j) ∈ E and i ∈ NBR(j). We use Ci to

represent the upload capacity of peer i. There is a streaming server S with capacity

Cs, which generates a video stream at rate r. The video stream is divided into a

sequence of data blocks with sequence numbers 1, 2, 3 . . . and data blocks are grouped

into K substreams based on sequence numbers [29] [77] [42] (e.g., data blocks with

sequence number k MOD K = 1 belongs to substream 1). Therefore, we establish

flow-level models in this section for analysis purpose only, which can be revised into

discrete packet-level models by replacing the continuous decision variables to discrete

variables. When K → +∞, the continuous models approach the discrete models. In

our implementations, we apply packet-level models for solving bandwidth allocation

and content scheduling problems. Peers joining the same overlay network periodically

exchange buffermaps to learn the content availability at neighboring peers, which is

the basis for requesting data from neighbors. Let dki ≥ 0 denote peer i’s demand for

substream k, which is determined by the content availability of neighboring peers.

Given the streaming rate r and client peers’ demand, server peers have the ability

to control the end-to-end flow among neighboring client peers to sustain the streaming

rate by solving problem BA. For each server peer i, the total flow out of i cannot

exceed its upload capacity Ci. In a slight abuse of notation, we also use BA to denote

solutions to the BA problem. For each i ∈ V , BA chooses a flow rate distribution for

all j ∈ NBR(i). We use πij to represent the fraction of flow that peer i allocates to

peer j.

Definition 1. A bandwidth allocation pattern is a vector ~π = (πij), ∀i, j ∈ V , with

πij ∈ [0, 1] and
∑

j∈NBR(i) πij = 1; that is the fraction of traffic flow sent from server

peer i to client peer j with the consideration of neighbors’ content demands from peer

i.

www.manaraa.com

121

Suppose BA has determined the bandwidth allocation pattern ~π. Then, each client

peer must select server peers from which to request required contents. Specifically,

client peer j will choose a rate distribution over its neighbor set NBR(j) to satisfy

its demand for each substream k, such that
∑

i∈NBR(j) a
k
ij = dkj , where akij denotes

peer j’s demand of substream k from peer i and dkj denotes peer j’s total demand

of substream k. We use eij =
∑

k∈K a
k
ij to represent the total content flow demand

between client peer j and server peer i. The content scheduling pattern can be defined

as follows:

Definition 2. A content scheduling pattern is a vector ~a = (akij), ∀i, j ∈ V, k ∈ K;

that is the rate demand for substream k of peer j, which will be requested from its

neighbors.

With Definition 1 and Definition 2, the amount of traffic flow sent from server

peer i to client peer j can be calculated with the following equation:

fij(~π,~a) = min(πij
∑

p∈NBR(i)

∑
k∈K

akip,
∑
k∈K

akij) (5.1)

Moreover, the total flow rate sent by peer i cannot exceed its upload capacity, which

corresponds to the constraint
∑

j∈NBR(i) fij ≤ Ci. Note that the system-wide optimal

streaming quality can be achieved if and only if
∑

p∈NBR(j) fpj ≥ r, ∀j ∈ V,.

Based on the above discussions, we model the bandwidth allocation problem and

content scheduling problem from the system perspective, in terms of minimizing social

objectives (i.e., the overall cost incurred by peers in the system). We must emphasize

that BA should be solved when a peer acts as a server and CS should be solved when

it acts a client.

www.manaraa.com

122

5.3.1 Bandwidth Allocation (BA) Model

According to the above discussions, fij is the traffic that is transmitted on overlay link

(i, j) (from peer i to peer j). We assign a nonnegative, nondecreasing, convex, and

differentiable cost function Sij to represent the cost incurred when peer i transmits

data flow fij. The cost can be interpreted as the congestion at peer i experienced by

peer j [88] or the latency on overlay link (i, j) due to flow fij [81]. Then, BA tries

to find an optimal bandwidth allocation pattern ~π over all possible rate allocations

that minimizes the total cost of the whole overlay network. The constraints are: 1)

The total flow sent by server peer i cannot exceed its upload capacity; 2) The total

flow received by client peer j should satisfy its demand. With previously defined

notations, the BA problem can be formulated as the following optimization problem:

BA(~π|~a):

minimize
∑
i∈V

∑
j∈NBR(i)

Sij(fij(
−→π ,−→a)) (5.2)

Subject to: ∑
j:j∈NBR(i)

fij ≤ Ci,∀i ∈ V

∑
i:i∈NBR(j)

fij ≥
∑
k∈K

dkj ,∀j ∈ V

∑
j∈NBR(i)

πij = 1,∀i, j ∈ V

πij ≥ 0,∀i, j ∈ V

5.3.2 Content Scheduling (CS) Model

Client peers learn the data availability at server peers via buffermap exchange. Then,

they only decide which server peer should be selected to satisfy their demands on each

substream k. They are unable to control the actual flow carried on overlay links, which

www.manaraa.com

123

is determined by BA. For example, the min-cost content scheduling algorithm [101]

maintains a historical record of overlay link utilization, which is used as the upload

bandwidth estimate for future scheduling decisions. Random Useful (RU) [58] as-

sumes that the overlay link utilization is known when proving rate optimality, where

an estimation/measurement approach should be used for real implementations.

To formulate an abstract model, each overlay link associates with a price, which

represents the streaming cost on that link (e.g., latency depending on the data flow

through it [101]). In P2P live streaming systems, each substream k might have dif-

ferent priorities at the moment of content scheduling. For example, there may be

fewer server peers holding substream k1 than the the ones holding k2. Therefore,

substream k1 should have higher priority than k2, which corresponds to rarest-first

scheduling approach [101]. Generally speaking, the priority of each substream is a

constant value, which depends on the data availability at server peers and can be cal-

culated before scheduling. At each scheduling round, the priorities can be considered

as constants. Therefore, we can adjust the price (defined below) of each substream

seen by peer j by its corresponding constant priority. To achieve a neat formulation,

we do not include the priority below, which is considered in our simulations.

According to the above discussion, we establish the formal model for CS. Each

overlay link (i, j) is assigned a nonnegative, nondecreasing, and continuous price func-

tion pij(?). We use eij =
∑

k∈K a
k
ij to represent the total data flow requested by peer

j through overlay link (i, j). Since BA and CS are carried out iteratively, client peers

face a fixed bandwidth allocation pattern ~π, when scheduling data requests. In prac-

tice, peer j maintains the historical values of πij as a bandwidth allocation estimate

for next round scheduling. Therefore, the price of link (i, j) can be represented as

pij(eij, πij), where πij is considered as a constant. Note that server peer’s upload

bandwidth is critical for streaming quality [40] [102] and the price function mainly

www.manaraa.com

124

reflects the latency due to the bandwidth allocation pattern ~π. From peer i’s point

of view, ~π is determined by BA, which is influenced by all other peers’ (i.e., {V \ i})

CS decisions.

Let Dij(eij, πij) =
∫ eij

0
pij(t, πij)dt. Then, the content scheduling problem can be

formulated as follows:

CS(~a|~π):

minimize
∑
j∈V

∑
i∈NBR(j)

Dij(eij, πij) (5.3)

Subject to: ∑
i∈NBR(j)

akij = dkj ,∀j ∈ V, ∀k ∈ K (5.4)

akij ≤ ski ,∀i, j ∈ V, ∀k ∈ K (5.5)

dkj ≤
∑

i∈NBR(j)

ski ,∀j ∈ V, ∀k ∈ K (5.6)

akij ≥ 0,∀i, j ∈ V, ∀k ∈ K (5.7)

The objective (5.3) of CS is to minimize the streaming cost (e.g., requesting

data from high capacity neighbors) when requesting data from neighboring peers.

Constraints (5.5) and (5.6) guarantee the feasibility of CS : 1) Peer j cannot request

data from peer i, which is not held by peer i; and 2) Peer j’s total demand for

substream k cannot exceed the total amount of substream k held by its neighbors. The

two constraints are guaranteed via buffermap exchange in P2P streaming systems.

In real systems, optimization problems (5.2) and (5.3) can be solved with distributed

algorithms based on decoupling theory [63].

www.manaraa.com

125

5.3.3 Characteristics of BA and CS

Peers make decisions on BA and CS independently and selfishly in P2P streaming

systems [104] [29] [88] [81]. Each of their corresponding decision sets constitutes

a best response for peers in the overlay network, which is in the style of Wardrop

equilibrium [7]. We define best responses for peers and prove the existence of the

best responses as follows.

According to the CS formulation (5.3), a peer chooses rate distribution ~a to mini-

mize the price it faces to obtain video streams. Given a bandwidth allocation pattern

~π and fixing other users’ decisions, a peer i chooses a rate distribution over its neigh-

bor set to satisfy its demand defined by constraint (5.4) with the goal of minimizing

the streaming cost. That is, for each i ∈ NBR(j), with eij =
∑

k∈K a
k
ij > 0, the

following inequality holds, where ẽij denotes any feasible value:

pij(eij, πij) ≤ pij(ẽij, πij) (5.8)

Definition 3. Best Content Scheduling Pattern: Given a bandwidth allocation ~π, a

content scheduling pattern ~a is the best content scheduling pattern for peers, if and

only if ∀j ∈ V and for each i ∈ NBR(j), with eij =
∑

k∈K a
k
ij > 0, where eij can be

arbitrarily close to 0, inequality (5.8) holds.

With the Definition 3, we are ready to show the existence of equilibrium of CS

when peers make their decisions independently and selfishly.

Proposition 1. Given a bandwidth allocation pattern ~π, a best content scheduling

pattern exists. Then, ~a is the best content scheduling pattern if and only if it is the

solution to the optimization problem CS(~a|~π) (5.3).

Proof: Since pij(?) = D
′
ij(?) is nonnegative, nondecreasing, Dij(?) is convex and dif-

ferentiable. The conditions for convex programming problem are readily seen to be

www.manaraa.com

126

equivalent to Definition 3 of best content scheduling pattern. Therefore, the exis-

tence of solution to problem (5.3) guarantees the existence of best content scheduling

pattern.

Similarly, we establish the best bandwidth allocation pattern for BA. The solution

to optimization problem (5.2) is a rate distribution minimizing the overall congestion

incurred by peers, which implies that the marginal cost of the chosen rate distribution

is at least as good as any other rate distributions. Precisely, for each peer j, for all

neighbors i ∈ NBR(j), the marginal cost of the chosen rate distribution should be,

where π̃ij denotes any feasible value:

∑
i∈NBR(j)

S
′

ij(πij) ≤
∑

i∈NBR(j)

S
′

ij(π̃ij) (5.9)

It can be easily verified that for an overlay network G = (V,E), the above inequal-

ity (5.9) is implied by the Karush-Kuhn-Tucker (KKT) conditions of optimization

problem (5.2). We establish the relationship between optimal solution to (5.2) and

inequality (5.9) with the proposition below.

Proposition 2. Given a fixed content scheduling pattern ~a, there exists a bandwidth

allocation pattern ~π that is optimal to problem (5.2) and satisfies inequality (5.9). Fur-

thermore, any bandwidth allocation ~π that satisfies inequality (5.9) is optimal to (5.2).

Proof: For the first part of Proposition 2, the optimality of (5.2) implies the in-

equality (5.9), according to the property of optimal solution. For the second part, it

follows the KKT conditions of (5.2), which are necessary and sufficient conditions for

the optimality of (5.2).

Definition 4. Best Bandwidth Allocation Pattern: Given a fixed content scheduling

pattern ~a, a bandwidth allocation pattern ~π is the best bandwidth allocation pattern

for peers, if and only if ∀j ∈ V , inequality (5.9) holds.

www.manaraa.com

127

In this subsection, we show the existences of optimal solutions to problems (5.2)

and (5.3). We also formally define the best responses of users for solving BA and

CS, which is the basis for studying the interaction between BA and CS with the

two-player game defined in Section 5.3.4.

5.3.4 BA-CS Game and Equilibrium Concept

In current P2P streaming systems, BA and CS are carried out independently and

we study the interaction between them based on the above formulations. They are

coupled with each other through delivering video streams using peer’s upload band-

width. Both BA and CS optimize their own objectives with corresponding strategies.

Therefore, we can model their interaction with a two-player non-cooperative game.

Definition 5. BA-CS game consists of a tuple [N,A,U]. The player set N = {BA,

CS}. The action set ABA = {~π} and ACS = {~a}, where the feasible sets of ~π and ~a are

determined by the constraints of optimization problems (5.2) and (5.3), respectively.

The utility functions are UBA = −Sij(?) and UCS = −Dij(?).

Figure 5.1 shows the interaction between BA and CS. Based on Section 5.3.3,

both BA and CS play the best response strategy. That is, BA always minimizes its

objective function (5.2) given the CS ’s strategy ~a and CS always minimizes stream-

ing cost incurred by users given BA’s strategy ~π. This procedure can be formally

described as follows, where BA and CS take turns to optimize their corresponding

objectives considering the strategy of the other player as a constant. Therefore, for

the (k + 1)th iteration, equations (5.10) and (5.11) show their interaction

www.manaraa.com

128

−→π k+1 = argmin−→π BA(−→a k) (5.10)

−→a k+1 = argmin−→a CS(−→π k) (5.11)

BA and CS are usually carried out in different time-scales. For example, BA

problem might be solved in the order of seconds or minutes; while CS problem might

be solved in the order of hundreds of milliseconds. Since peers make their decisions

independently and only exchange data with their direct neighbors, we assume that

each of the two players (i.e., BA and CS) has fully solved its own optimization problem

before the other player starts, when discussing the equilibrium and performance loss

below. We will remove this assumption in our simulations. Our simulation results

show that they have good convergence properties with various parameter settings

(e.g., system-wide bandwidth supplies), when BA and CS are carried out in the

order of seconds and milliseconds, respectively.

Definition 6. Nash Equilibrium: A strategy profile A? = {ABA(~π?), ACS(~a?)} is

a Nash equilibrium if, for both players BA and CS,

BA(
−→
π?|
−→
a?) ≤ BA(−→π |

−→
a?) (5.12)

CS(
−→
a? |
−→
π?) ≤ CS(−→a |

−→
π?) (5.13)

The following theorem shows that the Nash equilibrium of BA-CS game exists.

Specifically, we show the equilibrium condition with general cost functions used by

BA and CS, which are continuous, non-decreasing, and convex.

Theorem 8. The BA-CS game has a Nash equilibrium, when the cost functions are

continuous, non-decreasing, and convex.

www.manaraa.com

129

Proof: Based on the Nash theorem [59] [61], to prove the existence of an equilibrium,

it is sufficient to show that the following two conditions hold: 1) for each player, its

strategy space is non-empty, convex and compact; and 2) for each player, its util-

ity function is quasi-concave. The constraints for BS ’s optimization problem (5.2)

are affine inequalities. Therefore, it is a convex and compact set. The feasibility

is guaranteed by the assumption that there is sufficient bandwidth to sustain the

streaming rate of all peers, which implies that the BA’s strategy space is non-empty.

The cost function Sij(?) is convex and we can verify that the objective function (5.2)

is quasi-convex on ~π, which implies the utility function defined in Definition 5 is

quasi-concave. Similarly, CS ’s strategy space is defined by the set of constraints of

optimization problem (5.3), which are also affine equalities and inequalities. There-

fore, its strategy space is a convex and compact set. Since client peers request data

based on the data availability obtained by buffermap exchange, CS ’s strategy space is

non-empty. Based on the proof of Proposition 1, Dij(?) is convex and non-decreasing

and thus we can verify that the objective function (5.3) is quasi-convex. The utility of

CS is quasi-concave. Therefore, the two conditions of Nash theorem are satisfied.

Although Theorem 8 proves the existence of a Nash equilibrium of BA-CS game,

the Nash equilibrium might not be unique and social optimal in general cases and

we will discuss the performance loss with the defined game in the following section.

Furthermore, from an algorithmic perspective, the existence of equilibrium does not

necessarily guarantee that the procedure defined by (5.10) and (5.11) can find one.

We use simulations to verify the convergence of the game in Section 5.5.

www.manaraa.com

130

5.4 Interaction of BA-CS: A Game-Theoretic Anal-

ysis

In this section, we analyze the interaction between BA-CS based on the two-player

game defined above. In particular, we first study a scenario, where the Nash equi-

librium is unique and corresponds to the social optimal solution. Then, we use two

examples to show the performance loss in the two-player game. Finally, we discuss

the performance loss in general cases, in terms of different cost functions used by BA

and CS.

5.4.1 Social Optimality under Same Objectives

We study a special case, where the BA and CS have the same objective. That is,

they optimize the same objective function

BA = CS =
∑
i∈V

∑
j∈NBR(i)

Φij(fij(~π,~a)) (5.14)

One application scenario of this case is using a push-based data delivery scheme in

a relatively stable system, where server peers have the precise information about

content demand at client peers and push fresh data to them. For example, in a

tree-based overlay network for live streaming, parent peers push newly generated

data to child peers. Random Useful (RU) [58] is another example in mesh-based

overlay network, where the overlay link capacity is predetermined. In addition, the

network-coding based data delivery scheme [53] is a good example of this case as well.

However, the implementations of RU [43] shows that the original RU scheme generates

a large volume of redundancy packets due to peer dynamics. Network coding based

scheme [53] also generates redundancy packets in real implementations, in that server

www.manaraa.com

131

peers continuously push data streams to client peers until they receive the explicit

stop-faucet messages from client peers. That is why even though these approaches

have theoretically optimal performances, there is still a need for other approaches.

Since BA and CS optimize the same objective function, the P2P streaming system

can achieve a socially optimal operating point for data delivery. As a system designer,

we are interested in the question whether the iterative two-player game defined in

Section 5.3.4 can achieve the optimal point via alternating best-response decisions.

To answer this question, we define the socially optimal point as the solution to the

following optimization problem

BA-CS-Same(~x):

minimize
∑
i∈V

∑
j∈NBR(i)

Φij(
∑
k∈K

xk
ij) (5.15)

Subject to: ∑
j∈NBR(i)

∑
k∈K

xkij ≤ Ci, ∀i ∈ V (5.16)

∑
i∈NBR(j)

xkij = dkj , ∀j ∈ V, ∀k ∈ K (5.17)

xkij ≥ 0,∀i, j ∈ V, ∀k ∈ K

where xkij represents the rate of substream k, which is pushed from peer i to peer j.

At the end of Section 5.4.1, we describe the relationship between xkij and akij. Opti-

mization problem (5.15) reflects the coordination between BA and CS, which allows

the server peers sending the useful data to client peers in any way that minimizes

the streaming cost. Therefore, this problem establishes a performance upper bound

on P2P streaming. Since this problem can be considered as a special case of the

general two-player game defined in Section 5.3.4, it has a Nash equilibrium as shown

in Theorem 8.

In general, the existence of Nash equilibrium does not imply its uniqueness. If

www.manaraa.com

132

there is no fresh data between peers i and j, peer i’s decision on sending data to j

can be arbitrary without changing its utility, because the actual flow between peer i

and j is always 0. To avoid such a situation, we assume that there exist infinitesimal

data flows between a peer i and its direct neighbors, which can be arbitrarily close to

0. In the following the theorem, we shown that the Nash equilibrium of the BA-CS

game is unique and is exactly the social optimal solution to problem (5.15), when BA

and CS optimize the same objective function.

Theorem 9. Given BA and CS optimize the same continuous, non-decreasing, and

convex objective function and there exists non-zero content demand between any peer

pair, the Nash equilibrium of BA-CS game is unique and is a social optimal solution

to problem (5.15).

Proof Sketch: The existence of Nash equilibrium of this game is guaranteed by The-

orem 8, because the problem (5.15) is a special case of the general problem. The

uniqueness of the Nash equilibrium and optimal solution is guaranteed by convexity.

The idea of proving that the unique equilibrium is optimal is to prove the equivalence

of Nash equilibrium and the global optimum.

Based on the above discussion, the flow
∑

k∈K x
k
ij is actually the optimal flow

on overlay link (i, j). Therefore, given an optimal flow vector ~x, we can obtain the

content scheduling pattern as ~a = ~x. The bandwidth allocation pattern is a vector ~π,

where πij =
∑

k∈K x
k
ij/
∑

j∈NBR(i)

∑
k∈K x

k
ij.

5.4.2 Examples of Performance Loss

The optimization problem (5.15) establishes a lower bound on performance loss of

BA and CS in P2P streaming, which indicates that the BA-CS interaction does not

sacrifice performance under the same objective. In this subsection, we use two simple

www.manaraa.com

133

examples to show that the performance loss can be arbitrarily large, if the objective

functions of BA and CS are misaligned.

5.4.2.1 Example 1: W-shaped topology with pull-based method

Figure 5.2 shows a W-shape topology consisting of 5 peers, where peers A, B and

C are server peers with node capacity 1. The client peers D and E have one unit

flow demand for a specific type of content, which can be served by the three server

peers. Both peers D and E decide which server peer should be selected to request the

data (i.e., pulling required data), based on the link latency functions defined below.

Since peers A and C only serve a single peer, their only decision is to send the data

once requested by the corresponding client peer. However, peer B has two choices,

if D and E both request data from it. Suppose that B prefers D based on its cost

functions on the two peers.

The latency function for the four overlay links are defined as follows: DAD(fAD) =

0.9fAD, DBD(fBD) = 0.1fBD, DBE(fBE) = 0.1fBE and DCE(fCE) = 1000fCE.

Further, assume pij = D
′
ij(fij), to be the price for each overlay link. Therefore,

PAD(fAD) = 0.9, PBD(fBD) = 0.1, PBE(fBE) = 0.1 and PCE(fCE) = 1000. Client

peers request data from peers that minimize the streaming cost (i.e., through the links

with lowest price). Peer E has known that peer B prefers peer D based on historical

information as stated in [101]. Therefore, E sends its request to C, even though the

price of link CE is much higher than that of BE. Otherwise, E will suffer starvation

in this round, in that B will send data to D.

Based on the above scenario, the overall streaming cost incurred by both D and

E is 1 ∗ 0.1 + 1 ∗ 1000 = 1000.1. However, if the server peer B aligns its objective

function to minimize the latency incurred by client peers, the cost incurred by D and

E is 1 ∗ 0.9 + 1 ∗ 0.1 = 1, which implies that D requests data from A and E requests

www.manaraa.com

134

data from B. We can see that the streaming cost with misaligned objective functions

is about 1000-orders of magnitude higher than the cost of optimal solution. This

example shows that the pull-based P2P streaming system with misaligned objective

functions sacrifices the performance in terms of latency.

Client Peers

B

D E

A CServer Peers

Figure 5.2: An example of performance loss: 1000-orders of magnitude higher than
the cost of optimal flow.

5.4.2.2 Example 2: X-shaped topology with push-based method

Example 2 illustrates a toy system with four peers using push-based method, as shown

in Figure 5.3. Peers A and B are sever peers with node capacity 1. Each of the client

peers C and D has one unit flow demand, which will be pushed by server peers. The

cost functions (congestion) of each overlay link seen by server peers are: SAC(fAC) =

fAC , SAD(fAD) = 1
1−fAD

, SBC(fBC) = 1
1−fBC

and SBD(fBD) = fBD. The latency

functions of overlay links seen by client peers are: DAC(fAC) = 1, DAD(fAD) = fAD,

DBC(fBC) = fBC and DBD(fBD) = 1.

Server peers A and B schedule how to deliver the data flow by solving the op-

timization problem (5.2). The rates allocated over corresponding overlay links are:

πAC = (1
2
)
1
3 , πAD = 1−(1

2
)
1
3 , πBC = 1−(1

2
)
1
3 and πBD = (1

2
)
1
3 . However, the rates that

have minimal overall latency incurred by client peers should be πAC = 1
2
, πAD = 1

2
,

πBC = 1
2

and πBD = 1
2
. The rates are determined by solving problem (5.3) with

overlay link latency functions defined above.

From this example, we can see that the push-based data delivery approach is not

necessarily better than the pull-based method, if the objective functions of BA and

www.manaraa.com

135

Client Peers

A B

C D

Server Peers

Figure 5.3: An example of performance loss using push-based method.

CS are misaligned. Based on our discussion so far, the performance loss are due

to different shapes of cost functions and different types of costs modeled by these

functions. In next subsection, we try to analyze the impacts of cost functions using

the techniques borrowed from selfish routing [70].

5.4.3 General Prices and Performance Loss

In Section 5.4.1, we show the case that BA and CS achieve the social optimality,

where the price function pij(fij) = S
′
ij(fij). The optimal case implies that the prices

correctly reflect the congestion at server peers seen by client peers, which are defined

as Pigovian taxes [26]. As shown in above two examples, the performance loss might

be arbitrarily large if prices incorrectly reflect Pigovian taxes. We try to establish

bounds of performance loss for some special price functions in this subsection, before

evaluating performance loss with general price functions by simulations.

Based on the social optimization problem (5.15) and Theorem 9, the video stream

over P2P overlay networks can be considered as data flows sent among peers. Optimal

BA and CS solutions aim to find out optimal data flows. In addition, the data flow

can also be easily converted into BA and CS solutions, as shown in Section 5.4.1.

From the flow perspective, we can consider analogues of the bounds of performance

loss in selfish routing [70] and bounds of performance loss in P2P streaming systems,

which might be ensured for special cases (i.e., special types of objective functions).

www.manaraa.com

136

In this section, the cost function Sij(fij) = fijlij(fij) with the price function

pij(fij) = lij(fij), where lij(fij) is the latency function of overlay link (i, j). As defined

in Sections 5.3.1 and 5.3.2, the objective functions of BA and CS are misaligned

with this setting. In this case, BA allocates peer’s upload bandwidth to minimize

the total latency,
∑

i∈V
∑

j∈NBR(i) fijlij(fij). By contrast, each client peer selfishly

schedules data requests based on the measured latency (or the historical record)

without considering the impact on other peers. It implies that the CS problem

minimizes
∑

j∈V
∑

i∈NBR(j)

∫ fij
0

lij(y)dy. In fact, this is a typical case studied in

selfish routing and the bounds of performance loss are established in [70]. Our major

contribution here is to identify the proper model and relate our model with selfish

routing.

To obtain the bound of performance loss, we compare flows derived from the above

setting with the socially optimal flow resulting from Section 5.4.1. Suppose the so-

cially optimal problem (5.15) also minimizes the total latency
∑

i∈V
∑

j∈NBR(i) fijlij(fij).

Let ~fOPT represent the set of optimal flows, which can be realized by optimal band-

width allocation patterns ~πOPT and optimal content scheduling patterns ~aOPT . There-

fore, the total latency is
∑

i∈V
∑

j∈NBR(i) f
OPT
ij lij(f

OPT
ij) and fOPTij = πij

∑
j∈NBR(i)

∑
k∈K a

k
ij.

Compared with the socially optimal flow, there are two reference cases correspond-

ing to the following two scenarios: 1) Client peers independently request substreams

from best neighboring peers in terms of measured (or estimated) overlay link latency

and server peers simply satisfy received requests (e.g., using FIFO or Round-Robin

scheme to send requested data); and 2) Server peers have the global knowledge of

both the types and amounts of contents requested by client peers and are able to

make the best bandwidth allocation decisions ~πOPT (e.g., by distributed cooperative

message exchange or by centralized coordinations); whereas client peers make best

responses to the bandwidth allocation, as defined in Section 5.3.4. The two scenar-

www.manaraa.com

137

ios can represent practical protocols. For example, the min-cost block scheduling

protocol [101] can be represented by the first scenario; and the second scenario is

an idealized AQCS protocol [30], where peers are grouped into clusters and they

cooperate with each other within a cluster and there are inter-cluster cooperations.

For the first scenario, the flows on overlay links are determined by client peers’

requests, which can be model as the following optimization problem. The objec-

tive function is the same as the CS problem (5.3), Dij(fij(~a)) =
∫ f

0
lij(y)dy. Con-

straint (5.19) indicates the total flow through a server peer i cannot exceed its upload

capacity and constraint (5.20) indicates that total amount of requested substream k

should satisfy client peer j’s demand of k. The solution to this problem is a set of

equilibrium flows [26] and we use ~fEQ to denote the solution. As discussed in Sec-

tion 5.4.1, the bandwidth allocation pattern ~πEQ and the content scheduling pattern

~aEQ can be derived from the data flow.

minimize
∑
j∈V

∑
i∈NBR(j)

Dij(fij(
−→a)) (5.18)

Subject to: ∑
j∈NBR(i)

∑
k∈K

akij ≤ Ci,∀i ∈ V (5.19)

∑
i∈NBR(j)

akij = dkj ,∀j ∈ V (5.20)

akij ≥ 0,∀i, j ∈ V, ∀k ∈ K

We can derive the bound of cost resulting from the equilibrium flow ~fEQ, by re-

lating it to selfish routing scenario. Server peers can be considered as physical links

with capacity limits and client peers’ requests can be considered as traffic to be routed

through different physical links (i.e., requesting data from server peers). Therefore,

the cost bound resulting from equilibrium flow has very similar mathematical proper-

www.manaraa.com

138

ties to the selfish routing formulation. We can apply the techniques of analyzing the

price of anarchy in selfish routing [70] to establish bounds of performance loss in our

case. For example, if the link latency function, lij(fij), is affine, the total cost in equi-

librium situation is no more than 4
3

times of that in optimal situation. We can use the

same techniques to relate the second scenario to routing scenarios. Once such relation

is identified, the bounds of performance loss in P2P streaming system can be easily

derived based on the well established mathematical analysis in the routing scenario.

The streaming cost of some special functions are shown in Table 5.2 and we validate

some bounds in simulations below, where C̄ denotes average upload bandwidth and

rmax denotes maximum achievable streaming rate. As an example, we show the proof

of establishing the cost bound for linear functions, which has the form of ax + b.

We use COST (~fOPT) =
∑

i∈V
∑

j∈NBR(i) f
OPT
ij lij(f

OPT
ij) to denote the streaming cost

resulted from optimal flow ~fOPT and COST (~fWE) =
∑

i∈V
∑

j∈NBR(i) f
WE
ij lij(f

WE
ij)

to denote the streaming cost result flow at Nash Equilibrium defined in Section 5.3.4,

where the overlay link cost function (e.g., peer perceived overlay link latency) lij =

afij + b and a, b are constants. Following the analysis procedure in [70], we can derive

the following cost bound.

Theorem 10. If peer perceived overlay link cost functions are linear, then COST (~fWE)

COST (~fOPT)
≤

4
3
.

Proof: Since BA and CS determine video stream flows on overlay links, we consider

P2P streaming as sending useful data flows from server peers to client peers. The

game between BA and CS leads to an equilibrium as defined in Section 5.3.4. As

stated in above theorem, lij = afij + b, the cost of per flow is fijlij = af 2
ij + bfij and

the marginal cost is 2afij + b. Based on [70], if lij(fij) is linear, then any feasible

flow set ~fFEA is optimal if and only if the flow set is at Nash equilibrium. With

this statement, we can have the following property of flows at Nash equilibrium,

www.manaraa.com

139

supposing that lij(fij) is linear and streaming rate is r: 1) the flow ~fWE/2 with

streaming rate r is optimal for the P2P streaming system with streaming rate r/2;

and 2) the marginal cost of increasing the flow at a server peer i with respect to

~fWE/2 equals the streaming cost of i with respect to ~fWE. The two results can be

proved as follows.

With streaming rate r, a flow ~f is at equilibrium if and only if ∀i ∈ V , afij + b ≤

af̃ij + b and a flow ~f is optimal if and only if ∀i ∈ V , 2afij + b ≤ 2af̃ij + b, where f̃ij

is an arbitrary flow through peer i to peer j. The latter means that the optimal flow

should have the lowest marginal cost among all flows. To prove 1) above, we simply

note that if f satisfies the equilibrium condition with streaming rate r, the flow f/2

satisfies the optimal condition with streaming rate r/2, since ∀i ∈ V , afij+b ≤ af̃ij+b

implies ∀i ∈ V , 2a(fij/2) + b ≤ 2a(f̃ij/2) + b. For 2), remember that the marginal

cost per flow is 2af + b and thus the marginal cost of fij/2 for each peer equals to

the streaming cost definition of peer i.

We can now prove Theorem 10 with two steps: in the first step, an optimal flow

for streaming rate r/2 is supported by current P2P streaming system (which would

be half of a Nash flow for streaming rate r based on 1)), and then we can augment

the f/2 to f , which leads to the Nash flow for P2P streaming system with streaming

r. Finally, we show that the cost of first half flow is at least 1
4
COST (~fWE) and the

second half flow cost is at least 1
2
COST (~fWE). However, there is one problem of this

two-step proof. That is, the augmentation in the second step may increase or decrease

the amount of flow through any specific peer i. This problem has been solved by [70].

We apply similar technique below to prove that the cost of augmenting streaming

rate r to (1 + δ)r is at least COST (~fOPT) + δ
∑
∀i∈V

∑
∀j∈NBR(i)

˜COSTij(fOPTij)ri,

where ˜COSTij(fOPTij) denotes the minimum marginal cost of increasing flow between

peer i and j with respect to flow fOPTij).

www.manaraa.com

140

For each overlay link, the cost function lijfij =af 2
ij + bfij is convex. Therefore,

the inequality lij(fij)fij ≥ lij(f
OPT
ij)fOPTij + (fij − fOPTij)l̃ij(f

OPT
ij), where fij is an

arbitrary flow through link ij and l̃ij is the marginal cost of increasing flow on over-

lay link ij. With this inequality and ˜COSTij is the minimum marginal cost, we

can derive that the cost of sending flow with rate (1 + δ)r satisfies the following in-

equality. COST (~f) ≥
∑
∀i∈V

∑
∀j∈NBR(i) lij(f

OPT
ij)fOPTij +

∑
∀i∈V

∑
∀j∈NBR(i)(fij −

fOPTij)l̃ij(f
OPT
ij) ≥ COST (~fOPT) + δ

∑
∀i∈V

∑
∀j∈NBR(i)

˜COSTij(fOPTij)ri. Finally,

we can apply the above inequality and observations 1) and 2), we can show that

COST (~f) ≥ 3
4
COST (~fWE), where ~f is arbitrary flow. Therefore, the cost of optimal

flow with streaming rate r is at least 3
4

times of flow at equilibrium.

Table 5.2: Bound of Content Scheduling Cost
Description Typical Formula Cost Bound
Linear ax+ b 4

3

Quadratic ax2 + bx+ c 3
√

3
3
√

3−2

Cubic ax3 + bx2 + cx+ d 4 3√4

4 3√4−3

M/M/1 Delay 1
C−x

1
2
(1 +

√
C̄

C̄−rmax)

5.5 Simulations

In this section, we design and implement three groups of bandwidth allocation and

block scheduling algorithms in a packet-level simulator [102]. As mentioned in Sec-

tion 5.1, when the video stream is divided into discrete chunks, we refer to the process

of requesting useful data blocks from neighboring peers as block scheduling instead

of the general content scheduling. The terminology, block scheduling, is used herein

after. We demonstrate the impact of cost functions in solving bandwidth alloca-

tion and block scheduling problems on system performance and how to design new

www.manaraa.com

141

protocols with our established models. Complementary to the theoretical analysis,

the simulation results allow us to obtain better understanding of the interaction be-

tween bandwidth allocation and block scheduling at the system level. Moreover, the

simulation results and the theoretical analysis also provide guidelines for engineers

who need to design protocols for applications with specific requirements to achieve

optimal system performance (i.e., overall user perceived streaming quality). In the

following subsections, we first describe the simulation setup and protocol implemen-

tation. Then, we present simulation results and related discussions.

5.5.1 Simulation Setup

We implement the following three groups of bandwidth allocation and block schedul-

ing algorithms in C++ using an open-source, event-driven, packet-level simulator [102],

where all streaming and control packets and node buffers are carefully simulated. It

implements full functionalities of a P2P streaming system (e.g., overlay construction,

data delivery, etc.) and provides reliable results for P2P streaming quality evaluation

(e.g., VUD [92] uses this simulator for performance evaluation.).

5.5.1.1 OPT

Both the bandwidth allocation and block scheduling algorithms have exactly the

same objective functions, where client peers periodically pull data with the goal of

minimizing the streaming cost and server peers simply satisfy their requests if the

requested blocks are available. The shape of the cost function is shown in Figure 5.4,

which is used in [101] to design the min-cost block scheduling algorithm and obtained

from the algorithm implementation [102]. We use OPT to refer to this case.

www.manaraa.com

142

-200000

 0

 200000

 400000

 600000

 800000

 1e+06

 1 6 11 16 21 26

S
c
h
e
d
u
lin

g
 c

o
s
t

Number of neighbors holding a block

Figure 5.4: Cost function of block scheduling, which is used by OPT, MIN+PL and
MIN+QUEUE. Note that the smallest cost is 1.

5.5.1.2 MIN+PL

The bandwidth allocation and block scheduling algorithms have different objective

functions, where client peers periodically pull data with the goal of minimizing the

streaming cost and server peers satisfy their requests with the goal of minimizing con-

gestion. We use MIN+PL to refer to this case. The cost function of block scheduling

is the same as OPT. The cost function of bandwidth allocation is shown in Figure 5.5,

which is used to model the congestion cost in [38] and is given below:

Si(fi) =



fi, 0 ≤ fi/Ci < 1/3

3fi − 2/3Ci, 1/3 ≤ fi/Ci < 2/3

10fi − 16/3Ci, 2/3 ≤ fi/Ci < 9/10

70fi − 178/3Ci, 9/10 ≤ fi/Ci < 1

500fi − 1468/3Ci, 1 ≤ fi/Ci < 11/10

5000fi − 16318/3Ci, 11/10 ≤ fi/Ci <∞

www.manaraa.com

143

-100

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

S
i(
f i
)

fi/Ci

Figure 5.5: Piece-linear cost function of bandwidth allocation with Ci = 10, which is
used by MIN+PL.

5.5.1.3 MIN+QUEUE

The bandwidth allocation and block scheduling algorithms have different objective

functions, where client peers and server peers follow the same manner as MIN+PL

to request and send data. We use MIN+QUEUE to refer to this case. The block

scheduling cost function of MIN+QUEUE is the same as OPT and MIN+PL. The

bandwidth allocation cost function of MIN+QUEUE is shown in Figure 5.6, which

approximates the M/M/1 queueing delay and is given below:

Si(fi) =
1

Ci − fi
, fi < Ci

As shown in Figures 5.4, 5.5 and 5.6, we intentionally choose the cost functions of

bandwidth allocation and block scheduling to be very similar shapes. This allows us

to show that even if the cost functions of MIN+PL and MIN+QUEUE are relatively

well aligned, there are still performance gaps, compared with OPT. There are addi-

tional explanations of above cost functions: 1) The y-axis range of cost function in

Figure 5.4 is obtained from algorithm implementation in [102] and the ranges of cost

functions in Figure 5.5 and 5.6 are determined by peer i’s upload bandwidth; 2) The

www.manaraa.com

144

-2

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

S
i(
f i
)

fi/Ci

Figure 5.6: Queueing delay cost function of bandwidth allocation with Ci = 10, which
is used by MIN+QUEUE.

range differences between the block scheduling cost function and the two bandwidth

allocation cost functions do not influence the allocation results, in that block schedul-

ing and bandwidth allocation are carried out independently; and 3) The function

values of all these functions are strictly greater than 0.

To design scalable protocols, for all three cases, each peer solves local cost mini-

mization problems and there is no centralized scheme to coordinate decisions among

peers. Specifically, each peer maintains records of data sending rates and receiving

rates of direct neighbors as estimates of their data demands and supplies, which can

be converted to constraints of local BA and CS problems. In order to solve the local

optimization problems, we integrate the NOMAD nonlinear optimization library into

the simulator [5], which is open source and implemented in C++. It is a derivative-

free solver for mixed variable nonlinear optimization and has superior convergence

properties, which only requires the smoothness of objective functions. For a band-

width allocation/block scheduling with 30 variables and 30 constraints, it converges

within tens of milliseconds.

The underlying delay matrix is set the same as [102], which is a real-world node-

www.manaraa.com

145

to-node latency matrix (2500 × 2500) with 79 ms average end-to-end delay [4]. In

simulation results shown in this chapter, the raw streaming rate is 300Kbps (i.e.,

the 40-byte/packet header overhead is not included) and the maximum number of

neighbors is 30 and the request window size is 20 seconds. In addition, the stream-

ing server upload capacity is set to 600Kbps. To simulate bandwidth heterogeneity,

there are three different types of peers, whose upload capacities are 1Mbps, 384Kbps

and 128Kbps, respectively and download capacities are 3Mbps, 1.5Mbps, 768Kbps,

respectively. We use the resource index [40] [102] to control the system upload band-

width supplies via changing the fractions of the three types of peers. The resource

index is defined as the ratio of the total upload bandwidth supply to the raw streaming

rate (default value 300kbps) times the number of peers in the whole system, i.e., the

ratio of bandwidth supply to the minimum bandwidth demand, which is a necessary

condition for providing system-wide optimal streaming quality [40]. Peers request

data blocks every 500 ms and allocate bandwidth every 5 seconds.

5.5.2 Simulation Results and Discussions

In this section, we show the simulation results with different number of peers and

resource indices. We use the following metrics to evaluate the system performance:

1) Delivery ratio of a peer is defined as the number of received useful streaming blocks

in a period over the number of packets that should be received in the same period; 2)

Upload bandwidth utilization ratio of a peer is defined as the actually used upload

bandwidth over the upload capacity of a peer at a monitoring time point; and 3)

Block request cost of a peer is defined as the total cost of requested blocks during

each block request interval, with the cost function shown in Figure 5.4. Lower cost

implies better streaming quality. Note that we also collect results with other metrics

of streaming quality (e.g., playback delay, control overhead and average packet delay,

www.manaraa.com

146

etc.), which show similar trends as delivery ratio. Therefore, we omit these results in

this chapter. In addition, each data point in the following figures is an average value

of all online peers and is calculated every 10 seconds.

5.5.2.1 Simulation results

We first simulate a system with 500 peers, which join the system within 10 seconds

after the beginning of simulation and stay in the network until the end of the simu-

lation. Figures 5.7, 5.8 and 5.9 show results of OPT, MIN+PL and MIN+QUEUE

with resource index 1.0. Since the resource index does not consider the control packets

(e.g., buffermap exchange and block request packets), resource index 1.0 is insufficient

to sustain the optimal streaming quality (i.e., delivery ratio is close to 1). Therefore,

as shown in Figure 5.7, the delivery ratios of all three protocols are below 1, but

OPT still maintains the highest delivery ratio among the three. From Figure 5.8, we

can see that OPT fully utilizes peers’ upload bandwidth (i.e., the utilization ratio is

1 almost all the time). By contrast, MIN+PL and MIN+QUEUE only have upload

bandwidth utilization ratios above 0.8, even though the resource in insufficient for the

whole system and the cost function shapes are very similar to the block scheduling

cost function shape. Figure 5.9 shows that all the three protocols have similar average

block request costs and even OPT suffers high scheduling cost, because total upload

bandwidth is insufficient.

Figures 5.10, 5.11 and 5.12 show the results of a system with 500 peers and

resource index 1.2. Compared with Figure 5.7, Figure 5.10 shows that OPT can

achieve optimal delivery ratio, since there is sufficient upload bandwidth. However,

the streaming quality of MIN+PL and MIN+QUEUE improves a little with suf-

ficient upload bandwidth, in that block scheduling and bandwidth allocation have

different objectives and the situations of counter examples shown in Sections 5.4.2.1

www.manaraa.com

147

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 90 140 190 240 290
P

a
c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Simulation Time (Seconds)

MIN+PL
MIN+QUEUEING

OPT

Figure 5.7: Average delivery ratio of a P2P streaming system with 500 peers and
resource index 1.0.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 90 140 190 240 290U
p

lo
a

d
 B

a
n

d
w

id
th

 U
ti
liz

a
ti
o

n

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.8: Average upload bandwidth utilization ratio of a P2P streaming system
with 500 peers and resource index 1.0.

 1e+07

 1.4e+07

 1.8e+07

 2.2e+07

 2.6e+07

 30 60 90 120 150 180 210 240 270 300

B
lo

c
k
 R

e
q

u
e

s
t

C
o

s
t

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.9: Average block request cost of a P2P streaming system with 500 peers and
resource index 1.0.

www.manaraa.com

148

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 90 140 190 240 290
P

a
c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.10: Average delivery ratio of a P2P streaming system with 500 peers and
resource index 1.2.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 90 140 190 240 290U
p

lo
a

d
 B

a
n

d
w

id
th

 U
ti
liz

a
ti
o

n

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.11: Average upload bandwidth utilization ratio of a P2P streaming system
with 500 peers and resource index 1.2.

 1e+07

 1.4e+07

 1.8e+07

 2.2e+07

 2.6e+07

 30 60 90 120 150 180 210 240 270 300

B
lo

c
k
 R

e
q

u
e

s
t

C
o

s
t

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.12: Average block request cost of a P2P streaming system with 500 peers
and resource index 1.2.

www.manaraa.com

149

and 5.4.2.2 occur frequently. The low upload bandwidth utilization ratios of MIN+PL

and MIN+QUEUE in Figure 5.11 also confirm the former explanation. OPT’s up-

load bandwidth utilization ratio decreases slightly (from 1 to about 0.98), because the

control overhead is less than 0.1 of total upload bandwidth and the resource is more

than enough. From Figure 5.12, we can see that OPT leads to lower block scheduling

costs than MIN+PL and MIN+QUEUE, due to the sufficient bandwidth.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 90 140 190 240 290

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.13: Average delivery ratio of a P2P streaming system with 5000 peers and
resource index 1.2.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 90 140 190 240 290U
p

lo
a

d
 B

a
n

d
w

id
th

 U
ti
liz

a
ti
o

n

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.14: Average upload bandwidth utilization ratio of a P2P streaming system
with 5000 peers and resource index 1.2.

We increase the number of peers from 500 to 5000 to determine whether the above

trends are related to the system size. From Figures 5.13, 5.14 and 5.15, we can see

that OPT still maintains near optimal delivery ratio, upload bandwidth utilization

ratio and lower block request cost; while MIN+PL and MIN+QUEUE have similar

results with the above smaller system. Note that the delivery ratio of OPT is slightly

lower than 1, which is caused by other factors (such as exchange window size, data

www.manaraa.com

150

 1e+07

 1.4e+07

 1.8e+07

 2.2e+07

 2.6e+07

 30 60 90 120 150 180 210 240 270 300

B
lo

c
k
 R

e
q

u
e

s
t

C
o

s
t

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.15: Average block request cost of a P2P streaming system with 5000 peers
and resource index 1.2.

request interval, etc.) and is very similar to the optimal results of the same setting

in [102].

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 60 100 140 180 220 260 300

R
e

la
ti
v
e

 C
h

a
n

g
e

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.16: Scheduling cost changes of a P2P streaming system with 500 peers and
resource index 1.0.

Furthermore, we study the convergence of block scheduling algorithms by cal-

culating the relative changes of data request cost, which is defined as |CostN −

CostN−1|/CostN−1. Figures 5.16, 5.17 and 5.18 show the changes and the changes

fall below 10%, which shows good convergence property with the above simulation

settings. Since convergence might be influenced by many factors (e.g., the frequency

of running bandwidth allocation algorithms), we plan to investigate this further in

future work.

Finally, we compare the bound obtained in Table 5.2 with our simulation results

of 500 and 5,000 peers with resource index 1.2. The y-axis of Figure 5.19 is a ratio,

defined as the average block scheduling cost of MIN+QUEUE over the average cost

www.manaraa.com

151

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 60 100 140 180 220 260 300
R

e
la

ti
v
e

 C
h

a
n

g
e

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.17: Scheduling cost changes of a P2P streaming system with 500 peers and
resource index 1.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 60 100 140 180 220 260 300

R
e

la
ti
v
e

 C
h

a
n

g
e

Simulation Time (Seconds)

MIN+PL
MIN+QUEUE

OPT

Figure 5.18: Scheduling cost changes of a P2P streaming system with 5000 peers and
resource index 1.2.

 0.6

 0.9

 1.2

 1.5

 1.8

 30 60 90 120 150 180 210 240 270 300

R
a

ti
o

Simulation Time (Seconds)

Upper Bound
5000 Peers

500 Peers

Figure 5.19: Simulation cost ratio vs Theoretical Bound.

www.manaraa.com

152

of OPT. Based on simulation results, the maximum achievable streaming rate is close

to 300Kbps. Based on definition of resource index, the average upload bandwidth is

1.2 ∗ 300Kbps. With the formula 1
2
(1 +

√
C̄

C̄−rmax), we obtain the upper bound ratio

is 1.7247, which means that cost of MIN+QUEUE should not be higher than 1.7247

times OPT scheduling cost, as shown in Figure 5.19.

5.5.2.2 Discussion

Based on our packet-level simulations, we have the following observations: 1) When

implementing bandwidth allocation and block scheduling algorithms, solving the cor-

responding optimization problems locally is usually a good approximation to solv-

ing them globally; 2) When the objective functions of bandwidth allocation and

block scheduling are aligned, the system-wide performance is near-optimal; The near-

optimal performance is due to the fact that the streaming quality might be slightly

influenced by other parameters of a P2P streaming system [102] (e.g., the buffermap

exchange interval), though the system-wide performance is theoretically optimal; 3)

Even if the objective functions of solving the two problems are very similar, small

differences can lead to large performance losses; and 4) In the case of misaligned ob-

jective functions, we need methods of coordinating bandwidth allocation and block

scheduling. For example, Nash Bargaining Solution [61] is a good option. The study

in [38] even provides distributed algorithms for Nash Bargaining in ISP networks,

which are proved to achieve Pareto optimality. Another possible solution is to apply

the multi-objective optimization, e.g., NOMAD [5] provides a bi-objective optimiza-

tion solver. Intuitively, the implementation of such solutions will increase the control

overhead and there should be a trade-off between control overhead and accuracy.

www.manaraa.com

153

5.6 Chapter Summary

In this chapter, we study the problem of providing system-wide optimal quality of

service in P2P streaming systems via properly controlling a peer’s bandwidth al-

location BA and content scheduling CS. Specifically, we propose generic nonlinear

optimization models for solving bandwidth allocation and content scheduling prob-

lems. Then, we analyze the interaction between BA and CS with a two-player game

theoretic model, which shows that the system-wide suboptimal performance is mainly

due to the misaligned objectives of BA and CS. To validate our analysis, we design

and implement three groups of protocols for solving the two problems using an event-

driven, packet-level simulator. Based on the simulation results, even if the objective

functions have very similar shapes, the system-wide streaming quality is still subopti-

mal and joint design (e.g., Nash Bargaining) should be used for achieving system-wide

optimal streaming quality.

For future work, our models and analysis can be extended along two directions: 1)

Analyzing the performance loss considering overlays spanning multiple ISPs; and 2)

Analyzing the performance loss in multiple co-existing overlays. Both directions will

add new constraints to the optimization models and introduce multiple parties into

the game theoretic model. Furthermore, theoretically analyzing how system dynamics

impact the performance loss is even more challenging.

www.manaraa.com

154

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we investigated fundamental issues in building multi-channel P2P

streaming systems from a resource allocation perspective. To provide high stream-

ing quality, a multi-channel P2P streaming system should optimally utilize peers’

resources (e.g., upload bandwidth, low latency overlay links, etc.) and thus optimal

resource allocation algorithms should be developed. Instead of seeking algorithms to

specific applications, we studied a wide range of designs to provide design guidelines

for P2P streaming systems, based on optimization and queueing models. Our work

includes both theoretical analysis and simulations, which aims at solving the key

resource allocation problems, namely bandwidth allocation and block scheduling.

When designing protocols for multi-channel P2P streaming systems, we should

consider several important factors, including but not limited to efficiency, implemen-

tation complexity and control overhead. To choose a proper design, engineers must

consider trade-offs among these factors, based on specific application scenarios. Our

work mainly focused on establishing generic theoretical models for efficiently utilizing

www.manaraa.com

155

peers’ resources to provide optimal streaming quality. We further investigated im-

plementation complexity and control overhead with packet-level simulations, where

protocols for solving bandwidth allocation and block scheduling have been carefully

implemented and can be directly migrated to practical P2P streaming systems. How-

ever, there is one weakness of our simulation studies. Only a small set of our traces is

from real systems, since conducting Internet-scale measurements is very challenging

and time-consuming. Therefore, we generated as many cases as possible to evaluate

our proposed protocols.

Since bandwidth is the most precious resource in P2P streaming systems, a criti-

cal problem is to encourage peers to contribute their bandwidth as much as possible,

which leads to the design efficient strategies for providing incentives to peers. This

problem, which has attracted researchers from mathematics, economics and opera-

tions research, is beyond the scope of this dissertation. To sum up, our contributions

addressed how to optimally utilize existing peers’ resources instead of encouraging

peers to contribute more resources.

6.2 Future Work

We anticipate future work in this topic to proceed in two directions: 1) There is scope

for improving the performance of multi-channel P2P streaming systems; and 2) P2P

streaming technology can be applied in other time-sensitive systems. We describe the

two directions in detail.

The participants of P2P streaming system are Internet users and their behavior

might greatly influence the streaming quality. For example, users have different inter-

ests and viewing habits (e.g., some users prefer to watch movies as opposed to other

kinds of videos; many users watch videos at 9:00 PM; etc.). We can utilize these

www.manaraa.com

156

facts to design systems for providing high quality of service. Recently, Niu et al. [60]

propose a self-diagnostic P2P streaming system based on a machine learning frame-

work, where the system estimates performance with historical data and the system

resources can be more efficiently used. However, to fully understand user’s behavior

and interests is very challenging, because we need to retrieve such information from

a huge amount of data, which requires cross-disciplinary expertise. Moreover, the

social relationship among peers can also be utilized to design new generation P2P

streaming systems, in terms of better performance and privacy protection. Isdal et

al. [35] build a privacy-preserving P2P streaming system based on the trust among

friends in social networks. Besides preserving privacy, other topics can be pursuied in

the future, such as encouraging cooperations among friends, etc. Note that all future

designs should consider the multi-channel P2P streaming systems, in that there are

tens of thousands of videos for users to watch and all existing commercial systems

support hundreds of channels.

The other direction of future work is to extend P2P streaming technology in

other emerging Internet-scale technologies. Since the key design rationale of P2P

streaming is to utilize participating peers’ resources (e.g, upload bandwidth) for delay

sensitive video delivery, the theoretical analysis and implementations can be extended

to cloud computing, data center and large-scale network storage systems. There are

some researches and prototypes for building peer-assisted Content Delivery Networks

(CDN) [97] [34], which require peers to cache some contents for CDN servers. Liu

et al. [48] propose a P2P storage cloud to provide high-definition video streaming,

which constructs large-scale storage cloud purely based on P2P network and further

extends the idea of building peer-assisted systems. These successful examples are

only initial steps of extending P2P streaming to other large-scale networked systems.

In data center networks, there are more resource allocation problems among servers

www.manaraa.com

157

(e.g., power, bandwidth etc.), where we can find counterparts in P2P streaming.

P2P streaming is an amazing technology developed in the past few years, which

has quickly attracted millions of users and has proved successful in sustaining high-

definition video streaming with limited server bandwidth. Many new Internet applica-

tions and services (e.g., social network and service cloud) have similar characteristics

as P2P streaming systems, such as large scale and cooperations among participants.

Therefore, there are tremendous opportunities for both improving P2P streaming

systems using these new applications and extending P2P streaming technologies for

these new systems.

www.manaraa.com

158

Bibliography

[1] Youtube: http://www.youtube.com.

[2] http://www.comscore.com/Press_Events/Press_Releases/2010/4/

comScore_Releases_March_2010_U.S._Online_Video_Rankings.

[3] ATT: http://www.att.com/u-verse.

[4] A Lightweight Approach to Network Positioning: http://www.cs.cornell.

edu/People/egs/meridian/.

[5] M. A. Abramson, C. Audet, G. Couture, Jr. J. E. Dennis, and S. Le Digabel.

http://www.gerad.ca/NOMAD/Project/Home.html.

[6] M. Ahmed. Call admission control in wireless networks: A comprehensive sur-

vey. IEEE Communications Surveys and Tutorials 7, 7(1):50–69, 2005.

[7] M. Beckmann, C.B. McGuire, and C.B. Winsten. Studies in the economics of

transportation. Yale University Press for the Cowles Commission for Research

in Economics, New Haven, 1959.

[8] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, February 1997.

[9] Beta-Distribution. http://mathworld.wolfram.com/BetaDistribution.

html.

www.manaraa.com

159

[10] R. Bindal and P. Cao. Can self-organizing P2P file distribution provide QoS

guarantees. ACM Operating Systems Review, 40(3):22–30, July 2006.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W Weiss. An archi-

tecture for differentiated services. RFC2475, December 1998.

[12] T. Bonald, M. Jonckheere, and A. Proutiére. Insensitive load balancing. In

Proceedings of the joint international conference on Measurement and modeling

of computer systems, SIGMETRICS ’04/Performance ’04, pages 367–377, 2004.

[13] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg. Epidemic live

streaming: optimal performance trade-offs. SIGMETRICS Perform. Eval. Rev.,

36(1):325–336, 2008.

[14] T. Bonald and A. Proutière. Insensitivity in processor-sharing networks. Per-

form. Eval., 49(1/4):193–209, 2002.

[15] T. Bonald and A. Proutière. Insensitive bandwidth sharing in data networks.

Queueing Syst., 44(1):69–100, 2003.

[16] R. Braden, D. Clark, and S Shenker. Integrated services in the Internet archi-

tecture: an overview. RFC1633, June 1994.

[17] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.

SplitStream: High-bandwidth multicast in a cooperative environment. In Pro-

ceedings of ACM SOSP, Lake Bolton, NY, October 2003.

[18] M. Chen, S. Liu, S. Sengputa, M. Chiang, J. Li, and P. A. Chou. P2P streaming

capacity under node degree bound. Technical Report, Princeton University,

August 2009.

www.manaraa.com

160

[19] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast.

In in Proceedings of ACM Sigmetrics, pages 1–12, 2000.

[20] B. Cohen. Bittorrent. http://www.bittorrent.com/.

[21] CPLEX. http://www.ilog.com/products/cplex/.

[22] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. Qos’s downfall:

at the bottom, or not at all! In Proceedings of the ACM SIGCOMM workshop

on Revisiting IP QoS: What have we learned, why do we care?, RIPQoS ’03,

pages 109–114, 2003.

[23] T. Dan-Cristian and M. Laurent. Flow control for cost-efficient peer-to-peer

streaming. In Proceedings of IEEE INFOCOM, San Diego, CA, March 2010.

[24] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swinehart, and D. Terry. Epidemic algorithms for replicated database main-

tenance. In Proceedings of the sixth annual ACM Symposium on Principles of

distributed computing, pages 1–12, 1987.

[25] C. Diot, B. Neil, L. Bryan, and K. D. Balensiefen. Deployment issues for the

IP multicast service and architecture. IEEE Network, 14:78–88, 2000.

[26] D. DiPalantino and R. Johari. Traffic engineering vs. content distribution:

A game theoretic perspective. In Proceedings of INFOCOM, Rio de Janeiro,

Brazil, 2009.

[27] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer net-

works. In Proceedings of IEEE INFOCOM, Hong Kong, March 2004.

www.manaraa.com

161

[28] M. Gori, M. Maggini, and L. Sarti. Exact and approximate graph matching

using random walks. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(7):1100–1111, 2005.

[29] GridMedia. http://www.gridmedia.com.cn/.

[30] Y. Guo, C. Liang, and Y. Liu. Adaptive queue-based chunk scheduling for P2P

live streaming. In Proceedings of IFIP Networking, 2008.

[31] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. A measurement study of a

large-scale P2P IPTV system. IEEE Transactions on Multimedia, 9(8):1672–

1687, December 2007.

[32] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A measurement study of

a large-scale P2P IPTV system. IEEE Transactions on Multimedia, 9(8):1672–

1687, December 2007.

[33] X. Hei, Y. Liu, and K. Ross. Inferring network-wide quality in P2P Live stream-

ing systems. IEEE Journal on Selected Areas in Communications, 25(9):1640–

1654, December 2007.

[34] S. Ioannidis and P. Marbach. On the design of hybrid peer-to-peer systems.

Proceedings of SIGMETRICS, 36(1):157–168, 2008.

[35] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-preserving

P2P data sharing with oneswarm. Proceedings of SIGCOMM, August 2010.

[36] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang. A measurement-based

admission control algorithm for integrated service packet networks. IEEE/ACM

Trans. Netw., 5:56–70, February 1997.

www.manaraa.com

162

[37] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, James W. O’Toole,

Jr., M. Frans, and K. James. Overcast: Reliable multicasting with an overlay

network. In Proceedings of the 4th conference on Symposium on Operating

System Design and Implementation, pages 197–212, 2000.

[38] W. Jiang, R. Zhang-shen, J. Rexford, and M. Chiang. Cooperative content

distribution and traffic engineering in an ISP network. In Proceedings of Sig-

metrics, Seattle, WA, 2009.

[39] F. P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control in communication

networks: shadow prices, proportional fairness and stability. Journal of the

Operational Research Society, pages 237–252, 1998.

[40] R. Kumar, Y. Liu, and K. Ross. Stochastic fluid theory for P2P streaming

systems. In Proceedings of IEEE INFOCOM, pages 919–927, Anchorage, AK,

May 2007.

[41] H. Kung and C. Wu. Differentiated admission for peer-to-peer systems: In-

centivizing peers to contribute their resources. In Proceedings of Workshop on

Economics of Peer-to-Peer Systems, Berkely, CA, June 2003.

[42] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang. Inside the

new Coolstreaming: principles, measurements and performance implications.

In Proceedings of IEEE INFOCOM, Phoenix, AZ, April 2008.

[43] C. Liang, Y. Guo, and Y. Liu. Is random scheduling sufficient in P2P video

streaming? In Proceedings of ICDCS, Beijing, China, June 2008.

[44] J. Liang and K. Nahrstedt. RandPeer: membership management for QoS sensi-

tive peer-to-peer applications. In Proceedings of IEEE INFOCOM, pages 1–10,

Spain, April 2006.

www.manaraa.com

163

[45] J. Liang, B. Yu, Z. Yang, and K. Nahrstedt. A framework for future Internet-

based TV broadcasting. In Proceedings of IPTV Workshop, Edinburgh, Scot-

land, May 2006.

[46] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng. AnySee: Peer-to-peer live

streaming. In Proceedings of IEEE INFOCOM, Barcelona, Spain, April 2006.

[47] F. Liu, B. Li, L. Zhong, and B. Li. Understanding the flash crowd in P2P live

video streaming systems. In Packet Video Workshop, 2009., pages 1–10, June

2009.

[48] F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li. Novasky: Cinematic-quality

vod in a p2p storage cloud. Proceedings of IEEE INFOCOM, 2011.

[49] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang. Performance

bounds for peer-assisted live streaming. SIGMETRICS Perform. Eval. Rev.,

36(1):313–324, 2008.

[50] Y. Liu. On the minimum delay peer-to-peer video streaming: how realtime can

it be? In MULTIMEDIA ’07: Proceedings of the 15th international conference

on Multimedia, pages 127–136, New York, NY, USA, 2007. ACM.

[51] Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer video streaming sys-

tems. Journal of Peer-to-Peer Networking and Applications, 1(1):18–28, March

2008.

[52] Y. Liu, H. Zhang, W. Gong, and D. Towsley. On the interaction between overlay

routing and traffic engineering. In in Proceedings of IEEE INFOCOM, 2005.

www.manaraa.com

164

[53] Z. Liu, C. Wu, B. Li, and S. Zhao. UUSee: Large-scale operational on-demand

streaming with random network coding. In Proceedings of IEEE INFOCOM,

2010.

[54] S. H. Low and D. E. Lapsley. Optimization flow control, i: Basic algorithm and

convergence. IEEE Transactions on Networking, 7(6):861–875, December 1999.

[55] N. Magharei and R. Rejaie. Mesh or multiple-tree: A comparative study of live

p2p streaming approaches. In Proceedings of IEEE INFOCOM, pages 1424–

1432, 2007.

[56] N. Magharei and R. Rejaie. PRIME: Peer-to-peer receiver-driven mesh-based

streaming. In Proceedings of IEEE INFOCOM, Anchorage, Alaska, May 2007.

[57] L. Massoulie, E. Merrer, A. Kermarrec, and A. Ganesh. Peer counting and

sampling in overlay networks : Random walk methods. In Proceedings of ACM

PODC, pages 123–132, Denver, Colorado, July 2006.

[58] L. Massoulié, A. Twigg, C. Gkantsidis, and P. Rodriguez. Randomized decen-

tralized broadcasting algorithms. In Proceedings of IEEE INFOCOM, pages

1073–1081, 2007.

[59] J. F. Nash. Equilibrium points in n-person games. In Proceedings of the National

Academy of Sciences of the United States of America, 1950.

[60] D. Niu, B. Li, and S. Zhao. Self-diagnostic peer-assisted video streaming

through a learning framework. In Proceedings of ACM the international con-

ference on Multimedia, MM ’10, pages 73–82, 2010.

[61] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press,

1999.

www.manaraa.com

165

[62] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, A. E. Mohr, and E. E.

Mohr. Chainsaw: Eliminating trees from overlay multicast. In Proceedings of

IPTPS, pages 127–140, 2005.

[63] D. P. Palomar and M. Chiang. A tutorial on decomposition methods for net-

work utility maximization. IEEE Journal of Selected Aresa in Communications,

24:1439–1451, 2006.

[64] D. P. Palomar and M. Chiang. Alternative distributed algorithms for network

utility maximization: Framework and applications. IEEE Transactions on Au-

tomatic Control, 52(12):2254–2269, December 2007.

[65] H. Perros and K Elsayed. Call admission control schemes: a review. IEEE

Communications Magazine, 34(11):82–91, November 1996.

[66] PPLive. http://www.pplive.com.

[67] PPStream. http://www.ppstream.com.

[68] T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu. Modeling channel popularity

dynamics in a large IPTV system. In Proceedings of SIGMETRICS ’09, pages

275–286, 2009.

[69] A. Raghuveer, Y. Dong, and D. Du. On providing reliability guarantees in

live video streaming with collaborative clients. In Proceedings of Multimedia

Computing and Networking Conference (MMCN), San Jose, CA, January 2007.

[70] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of The

ACM, 49(2):236–259, 2002.

www.manaraa.com

166

[71] S. Saroiu, K. K. Gummadi, and S. D. Gribble. A measurement study of peer-

to-peer file sharing systems. In Proceedings of Multimedia Computing and Net-

working (MMCN) 2002, San Jose, CA, USA, January 2002.

[72] S. Shenker. Fundamental design issues for the future Internet. IEEE Journal

on Selected Areas in Communication, 13(7), September 1995.

[73] H. Shojania and B. Li. Nuclei: GPU-accelerated many-core network coding. In

Proceedings of IEEE INFOCOM, pages 459–467, Rio de Janeiro, Brazil, April

2009.

[74] J. Siwko and I Rubin. Call admission control for capacity-varying networks.

Telecommnuication Systems, 16(1):15–40, 2001.

[75] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger. On unbiased

sampling for unstructured peer-to-peer networks. In Proceedings of ACM IMC,

pages 377–390, Rio de Janeiro, Brazi, October 2006.

[76] D. A. Tran, K. A. Hua, and T. Do. ZIGZAG: An efficient peer-to-peer scheme

for media streaming. In Proceedings of IEEE INFOCOM, San Francisco, CA,

March 2003.

[77] UUSee. http://www.uusee.com.

[78] F. Wang, J. Liu, and Y. Xiong. Stable peers: Existence, importance, and appli-

cation in peer-to-peer live video streaming. In Proceedings of IEEE INFOCOM,

pages 1364–1372, Phoenix, AZ, April 2008.

[79] M. Wang and B. Li. Lava: A reality check of network coding in peer-to-peer live

streaming. In Proceedings of IEEE INFOCOM, pages 1082–1090, Anchorage,

AK, May 2007.

www.manaraa.com

167

[80] M. Wang, L. Xu, and B. Ramamurthy. Channel-aware peer selection in multi-

view peer-to-peer multimedia streaming. In Proceedings of IEEE International

Workshop on IP Multimedia Communications (IPMC) at ICCCN, pages 1–6,

2008.

[81] M. Wang, L. Xu, and B. Ramamurthy. A flexible divide-and-conquer protocol

for multi-view peer-to-peer live streaming. In Proceedings of IEEE P2P, pages

291–300, 2009.

[82] M. Wang, L. Xu, and B. Ramamurthy. Providing statistically guaranteed

streaming quality for peer-to-peer live streaming. In The 19th ACM Interna-

tional Workshop on Network and Operating Systems Support for Digital Audio

and Video (NOSSDAV), pages 127–132, 2009.

[83] M. Wang, L. Xu, and B. Ramamurthy. Comparing multi-channel peer-to-

peer video streaming system designs. In Proceedings of IEEE LANMAN, Long

Branch, NJ, 2010.

[84] M. Wang, L. Xu, and B. Ramamurthy. Comparing multi-channel peer-to-peer

video streaming system designs. Technical Report, University of Nebraska-

Lincoln, November 2010.

[85] M. Wang, L. Xu, and B. Ramamurthy. Improving multi-view peer-to-peer

live streaming systems with the divide-and-conquer strategy. Technical Report,

University of Nebraska-Lincoln, August 2010.

[86] M. Wang, L. Xu, and B. Ramamurthy. Linear programming models for multi-

channel P2P streaming systems. In Proceedings of IEEE INFOCOM Mini-

Conference, 2010.

www.manaraa.com

168

[87] M. Wang, L. Xu, and B. Ramamurthy. On providing optimal quality of service

in p2p on providing optimal quality of service in p2p streaming systems. The

31st International Conference on Distributed Computing Systems (Submitted),

2011.

[88] C. Wu and B. Li. Strategies of conflict in coexisting streaming overlays. In

Proceedings of IEEE INFOCOM, pages 481–489, Anchorage, AK, May 2007.

[89] C. Wu, B. Li, and Z. Li. Dynamic bandwidth auctions in multi-overlay P2P

streaming with network coding. IEEE Transactions on Parallel and Distributed

Systems, 19(6):806–820, June 2008.

[90] C. Wu, B. Li, and S Zhao. Characterizing peer-to-peer streaming flows. IEEE

Journal on Selected Areas in Communications, 25(9):1612–1626, December

2007.

[91] C. Wu, B. Li, and S. Zhao. Multi-channel live P2P streaming: Refocusing on

servers. In Proceedings of IEEE INFOCOM, Phoenix, AZ, April 2008.

[92] D. Wu, C. Liang, Y. Liu, and K. W. Ross. View-upload decoupling: A redesign

of multi-channel p2p video systems. In Proceedings of IEEE INFOCOM, Mini-

Conference, pages 1–6, Rio de Janeiro, Brazil, 2009.

[93] D. Wu, Y. Liu, and K. W. Ross. Queuing network models for multi-channel

P2P live streaming systems. In Proceedings of IEEE INFOCOM, pages 73–81,

Rio de Janeiro, Brazil, 2009.

[94] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On peer-to-peer media

streaming. In Proceedings of IEEE International Conferences on Distributed

Computing Systems (ICDCS), Austria, July 2002.

www.manaraa.com

169

[95] Z. Yang, Y. Cui, B. Yu, J. Liang, K. Nahrstedt, S. Jung, and R. Bajscy. TEEVE:

the next generation architecture for tele-immersive environments. In Proceedings

of International Symposium on Multimedia, Irvine, CA, December 2005.

[96] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajcsy. Viewcast: View dis-

semination and management for multi-party 3D tele-immersive environments.

In Proceedings of ACM Multimedia, pages 882–891, Germany, September 2007.

[97] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li.

Design and deployment of a hybrid CDN-P2P system for live video streaming:

experiences with livesky. In Proceedings of ACM International Conference on

Multimedia, pages 25–34, New York, USA, 2009.

[98] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understanding user behavior in

large-scale video-on-demand systems. SIGOPS Oper. Syst. Rev., 40(4):333–344,

2006.

[99] M. Zhang. http://media.cs.tsinghua.edu.cn/~zhangm/.

[100] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang. On the optimal scheduling for me-

dia streaming in data-driven overlay networks. In Proceedings of IEEE GLOBE-

COM, pages 1–5, San Francisco, CA, 2006.

[101] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang. Optimizing the throughput of

data-driven peer-to-peer streaming. IEEE Transactions on Parallel and Dis-

tributed Systems, 20(1), 2009.

[102] M. Zhang, Q. Zhang, and S. Yang. Understanding the power of pull-based

streaming protocol: Can we do better? IEEE Journal on Selected Areas in

Communications, 25(8):1678–1694, 2007.

www.manaraa.com

170

[103] X. Zhang and B. Li. On the market power of network coding in P2P content

distribution systems. In Proceedings of IEEE INFOCOM, Rio de Janeiro, Brazil,

April 2009.

[104] X. Zhang, J. Liu, B. Li, and T. Yum. DONet/CoolStreaming: A data-driven

overlay network for live media streaming. In Proceedings of IEEE INFOCOM,

Miami, FL, March 2005.

[105] Y. Zhou, D. Chiu, and J. Lui. A simple model for analyzing P2P streaming

protocols. In Proceedings of ICNP, Beijing, China, October 2007.

[106] G. Zhu, X. Luo, and Y. Miao. Exact weight perfect matching of bipartite graph

is NP-Complete. In Proceedings of the World Congress on Engineering (WCE),

volume 2, pages 1–6, London, UK, July 2008.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Spring 4-18-2011

	MULTI-CHANNEL PEER-TO-PEER STREAMING SYSTEMS AS RESOURCE ALLOCATION PROBLEMS
	Miao Wang

	tmp.1303073644.pdf.RRBRG

